Suppr超能文献

通过纳米结构力学和几何形状控制表面细菌生物膜的生长。

Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry.

机构信息

School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.

出版信息

Nanotechnology. 2011 Dec 9;22(49):494007. doi: 10.1088/0957-4484/22/49/494007. Epub 2011 Nov 21.

Abstract

Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray--thus mimicking an extremely compliant flat surface--bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

摘要

细菌的表面相关群落,称为生物膜,遍布于自然和人为环境中。成熟的生物膜能够抵抗广泛的抗菌处理,因此构成了持续的致病威胁。人们发现,利用表面化学抑制生物膜生长只能暂时影响初始附着。在这项工作中,我们研究了物理表面特性的可调谐效应,包括最近报道的高纵横比(HAR)表面纳米结构阵列,该阵列可诱导细菌在表面上进行长程自发空间图案化。通过组合方法阐明了控制这种针对杆状致病菌铜绿假单胞菌的人工图案化的功能参数和长度尺度范围。我们进一步报告了 HAR 纳米结构表面上的生物膜生长与纳米结构有效刚度的交叉区。当发状纳米阵列的“柔软度”增加超过阈值时,与平面对照表面相比,生物膜生长受到抑制。这一结果与细菌对表面的机械选择性附着一致。因此,通过结合纳米阵列诱导的细菌图案化和调节纳米阵列的有效刚度——从而模拟极其柔软的平面——可以利用细菌的机械选择性附着来控制和抑制生物膜生长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验