Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada.
Nucl Med Biol. 2018 Jul-Aug;62-63:9-17. doi: 10.1016/j.nucmedbio.2018.05.001. Epub 2018 May 5.
Non-invasive imaging of COX-2 in cancer represents a powerful tool for assessing COX-2-mediated effects on chemoprevention and radiosensitization using potent and selective COX-2 inhibitors as an emerging class of anticancer drugs. Careful assessment of the pharmacokinetic profile of radiolabeled COX-2 inhibitors is of crucial importance for the development of suitable radiotracers for COX-2 imaging in vivo. The delicate balance between the selection of typical COX-2 pharmacophores and the resulting physicochemical characteristics of the COX-2 inhibitor represents a formidable challenge for the search of radiolabeled COX-2 imaging agents. Several pyrimidine-based COX-2 inhibitors demonstrated favorable in vitro and in vivo COX-2 imaging properties in various COX-2 expressing cancer cell lines. Here, we describe a comparative radiopharmacological study of three F-labeled COX-2 inhibitors based on a pyrimidine scaffold. The objective of this study was to investigate how subtle structural alterations influence the pharmacokinetic profile of lead compound [F]1a ([F]Pyricoxib) to afford F-labeled pyrimidine-based COX-2 inhibitors with improved COX-2 imaging properties in vivo.
Radiosynthesis of radiotracers was accomplished through reaction with 4-[F]fluorobenzyl amine on a methyl-sulfone labeling precursor ([F]1a and [F]2a) or late-stage radiofluorination using a iodyl-containing labeling precursor ([F]3a). Radiopharmacological profile of F-labeled pyrimidine-based COX-2 inhibitors [F]1a, [F]2a and [F]3a was studied in COX-2-expressing human HCA-7 colorectal cancer cell line, including cellular uptake studies in HCA-7 cells and dynamic PET imaging studies in HCA-7 xenografts.
Cellular uptake of radiotracers [F]2a and [F]3a in HCA-7 cells was 450% and 300% radioactivity/mg protein, respectively, after 90 min incubation, compared to 600% radioactivity/mg protein for radiotracer [F]1a. Dynamic PET imaging studies revealed a tumor SUV of 0.53 ([F]2a) and 0.54 ([F]3a) after 60 min p.i. with a tumor-to-muscle ratio of ~1. Tumor SUV for [F]1a (60 min p.i.) was 0.76 and a tumor-to-muscle ratio of ~1.5. Pyricoxib analogues [F]2a and [F]3a showed distinct pharmacokinetic profiles in comparison to lead compound [F]1a with a significantly improved lung clearance pattern. Replacing the 4-[F]fluorobenzyl amine motif in radiotracer [F]1a with a 4-[F]fluorobenzyl alcohol motif in radiotracer [F]3a resulted in re-routing of the metabolic pathway as demonstrated by a more rapid liver clearance and higher initial kidney uptake and more rapid kidney clearance compared to radiotracers [F]1a and [F]2a. Moreover, radiotracer [F]3a displayed favorable rapid brain uptake and retention.
The radiopharmacological profile of three F-labeled COX-2 inhibitors based on a pyrimidine scaffold were evaluated in COX-2 expressing human colorectal cancer cell line HCA-7 and HCA-7 xenografts in mice. Despite the overall structural similarity and comparable COX-2 inhibitory potency of all three radiotracers, subtle structural alterations led to significantly different in vitro and in vivo metabolic profiles.
Among all tested pyrimidine-based F-labeled COX-2 inhibitors, lead compound [F]1a remains the most suitable radiotracer for assessing COX-2 expression in vivo. Radiotracer [F]3a showed significantly improved first pass pulmonary passage in comparison to radiotracer [F]1a and might represents a promising lead compound for the development of radiotracers for PET imaging of COX-2 in neuroinflammation.
在癌症中对 COX-2 进行非侵入性成像代表了一种强大的工具,可用于评估使用强效和选择性 COX-2 抑制剂(作为一类新兴的抗癌药物)进行化学预防和放射增敏的 COX-2 介导的作用。对放射性标记 COX-2 抑制剂的药代动力学特征进行仔细评估对于开发适合 COX-2 体内成像的放射性示踪剂至关重要。典型 COX-2 药效团的选择与 COX-2 抑制剂的理化特性之间的微妙平衡对寻找 COX-2 成像放射性示踪剂构成了巨大挑战。几种基于嘧啶的 COX-2 抑制剂在各种 COX-2 表达的癌细胞系中表现出有利的体外和体内 COX-2 成像特性。在这里,我们描述了基于嘧啶支架的三种 F 标记 COX-2 抑制剂的比较放射药理学研究。本研究的目的是研究如何通过微妙的结构改变来影响先导化合物[F]1a([F]吡罗昔康)的药代动力学特征,从而获得具有改善的体内 COX-2 成像特性的 F 标记嘧啶基 COX-2 抑制剂。
通过在甲基磺酰基标记前体[F]1a 和[F]2a 上与 4-[F]氟苄基胺反应或使用含碘标记前体进行晚期放射性氟化来完成放射性示踪剂的放射合成[F]3a。在 COX-2 表达的人 HCA-7 结直肠癌细胞系中研究 F 标记的嘧啶基 COX-2 抑制剂[F]1a、[F]2a 和[F]3a 的放射药理学特征,包括在 HCA-7 细胞中的细胞摄取研究和在 HCA-7 异种移植中的动态 PET 成像研究。
与放射性示踪剂[F]1a 的 600%放射性/毫克蛋白相比,放射性示踪剂[F]2a 和[F]3a 在 HCA-7 细胞中的细胞摄取分别为 450%和 300%放射性/毫克蛋白,90 分钟孵育后。动态 PET 成像研究显示,在 60 分钟 p.i.后,[F]2a(60 分钟 p.i.)和[F]3a(60 分钟 p.i.)的肿瘤 SUV 分别为 0.53 和 0.54,肿瘤与肌肉比约为 1。[F]1a(60 分钟 p.i.)的肿瘤 SUV 为 0.76,肿瘤与肌肉比约为 1.5。与先导化合物[F]1a 相比,吡罗昔康类似物[F]2a 和[F]3a 的药代动力学特征明显不同,具有明显改善的肺清除模式。放射性示踪剂[F]1a 中的 4-[F]氟苄基胺基替换为放射性示踪剂[F]3a 中的 4-[F]氟苄基醇基,这表明代谢途径发生了重排,与放射性示踪剂[F]1a 和[F]2a 相比,肝脏清除更快,初始肾脏摄取更高,肾脏清除更快。此外,放射性示踪剂[F]3a 显示出有利的快速脑摄取和保留。
在 COX-2 表达的人结直肠癌细胞系 HCA-7 和 HCA-7 异种移植小鼠中评估了三种基于嘧啶骨架的 F 标记 COX-2 抑制剂的放射药理学特征。尽管所有三种放射性示踪剂的总体结构相似,且 COX-2 抑制活性相当,但细微的结构改变导致了明显不同的体外和体内代谢特征。
在所有测试的基于嘧啶的 F 标记 COX-2 抑制剂中,先导化合物[F]1a 仍然是评估体内 COX-2 表达的最适合的放射性示踪剂。与放射性示踪剂[F]1a 相比,放射性示踪剂[F]3a 显示出明显改善的首次通过肺传递,可能是开发用于神经炎症中 COX-2 PET 成像的放射性示踪剂的有前途的先导化合物。