Departments of Neuroscience and.
Departments of Neuroscience and
J Neurosci. 2018 Jun 27;38(26):5888-5899. doi: 10.1523/JNEUROSCI.0461-18.2018. Epub 2018 May 25.
Recent studies suggest that spontaneous and action potential-evoked neurotransmitter release processes are independently regulated. However, the mechanisms that uncouple the two forms of neurotransmission remain unclear. In cultured mouse and rat neurons, we show that the two C2 domain-containing protein copine-6 is localized to presynaptic terminals and binds to synaptobrevin2 as well as other SNARE proteins in a Ca-dependent manner. Ca-dependent interaction of copine-6 with synaptobrevin2 selectively suppresses spontaneous neurotransmission in a reaction that requires the tandem tryptophan residues at the C-terminal region of synaptobrevin2. Accordingly, copine-6 loss of function augmented presynaptic Ca elevation-mediated neurotransmitter release. Intracellular Ca chelation, on the other hand, occluded copine-6-mediated suppression of release. We also evaluated the molecular specificity of the copine-6-dependent regulation of spontaneous release and found that overexpression of copine-6 did not suppress spontaneous release in synaptobrevin2-deficient neurons. Together, these results suggest that copine-6 acts as a specific Ca-dependent suppressor of spontaneous neurotransmission. Synaptic transmission occurs both in response to presynaptic action potentials and spontaneously, in the absence of stimulation. Currently, much more is understood about the mechanisms underlying action potential-evoked neurotransmission compared with spontaneous release. However, recent studies have shown selective modulation of spontaneous neurotransmission process by several neuromodulators, suggesting specific molecular regulation of spontaneous release. In this study, we identify copine-6 as a specific regulator of spontaneous neurotransmission. By both gain-of-function and loss-of-function experiments, we show that copine-6 functions as a Ca-dependent suppressor of spontaneous release. These results further elucidate the mechanisms underlying differential regulation of evoked and spontaneous neurotransmitter release.
最近的研究表明,自发性和动作电位诱发的神经递质释放过程是独立调节的。然而,使这两种形式的神经传递解偶联的机制尚不清楚。在培养的小鼠和大鼠神经元中,我们表明两个含有 C2 结构域的蛋白 copine-6 定位于突触前末梢,并以 Ca2+依赖性方式与突触融合蛋白 2 以及其他 SNARE 蛋白结合。copine-6 与突触融合蛋白 2 的 Ca2+依赖性相互作用选择性地抑制了自发性神经传递,这种反应需要突触融合蛋白 2 羧基末端区域串联色氨酸残基。因此,copine-6 功能丧失增强了突触前 Ca2+升高介导的神经递质释放。另一方面,细胞内 Ca2+螯合则阻断了 copine-6 介导的释放抑制。我们还评估了 copine-6 对自发性释放的调控的分子特异性,发现 copine-6 的过表达并不能抑制突触融合蛋白 2 缺陷神经元中的自发性释放。总之,这些结果表明 copine-6 作为一种特异性的 Ca2+依赖性自发性神经传递抑制剂发挥作用。突触传递既可以响应突触前动作电位,也可以在没有刺激的情况下自发发生。目前,与自发性释放相比,人们对动作电位诱发的神经递质传递的机制有了更多的了解。然而,最近的研究表明,几种神经调质选择性地调节自发性神经传递过程,表明自发性释放存在特定的分子调节。在这项研究中,我们将 copine-6 鉴定为一种特异性的自发性神经传递调节剂。通过功能获得和功能丧失实验,我们表明 copine-6 作为一种 Ca2+依赖性的自发性释放抑制剂发挥作用。这些结果进一步阐明了诱发和自发性神经递质释放的差异调节的机制。