Suppr超能文献

动物罕见骨骼疾病建模。

Modeling Rare Bone Diseases in Animals.

机构信息

Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Curr Osteoporos Rep. 2018 Aug;16(4):458-465. doi: 10.1007/s11914-018-0452-x.

Abstract

PURPOSE OF REVIEW

The goal of this review is to highlight some of the considerations involved in creating animal models to study rare bone diseases and then to compare and contrast approaches to creating such models, focusing on the advantages and novel opportunities offered by the CRISPR-Cas system.

RECENT FINDINGS

Gene editing after creation of double-stranded breaks in chromosomal DNA is increasingly being used to modify animal genomes. Multiple tools can be used to create such breaks, with the newest ones being based on the bacterial adaptive immune system known as CRISPR/Cas. Advances in gene editing have increased the ease and speed, while reducing the cost, of creating novel animal models of disease. Gene editing has also expanded the number of animal species in which genetic modification can be performed. These changes have significantly increased the options for investigators seeking to model rare bone diseases in animals.

摘要

目的综述

本文旨在强调一些在创建用于研究罕见骨骼疾病的动物模型时需要考虑的问题,然后比较和对比创建这些模型的方法,重点介绍 CRISPR-Cas 系统提供的优势和新机会。

最近的发现

在染色体 DNA 双链断裂后进行基因编辑,越来越多地用于修饰动物基因组。有多种工具可用于创建此类断裂,最新的工具基于称为 CRISPR/Cas 的细菌适应性免疫系统。基因编辑技术的进步提高了创建疾病新型动物模型的简便性和速度,同时降低了成本。基因编辑还扩大了可以进行遗传修饰的动物物种数量。这些变化显著增加了研究人员在动物中模拟罕见骨骼疾病的选择。

相似文献

1
Modeling Rare Bone Diseases in Animals.
Curr Osteoporos Rep. 2018 Aug;16(4):458-465. doi: 10.1007/s11914-018-0452-x.
2
Reporter Mice for Gene Editing: A Key Tool for Advancing Gene Therapy of Rare Diseases.
Cells. 2024 Sep 9;13(17):1508. doi: 10.3390/cells13171508.
3
Genetics of bone diseases: Paget's disease, fibrous dysplasia, osteopetrosis, and osteogenesis imperfecta.
Joint Bone Spine. 2011 May;78(3):252-8. doi: 10.1016/j.jbspin.2010.07.010. Epub 2010 Sep 19.
4
genome editing thrives with diversified CRISPR technologies.
Zool Res. 2018 Mar 18;39(2):58-71. doi: 10.24272/j.issn.2095-8137.2017.012.
5
Advances in CRISPR-Cas systems for RNA targeting, tracking and editing.
Biotechnol Adv. 2019 Sep-Oct;37(5):708-729. doi: 10.1016/j.biotechadv.2019.03.016. Epub 2019 Mar 27.
6
Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method.
Methods Mol Biol. 2021;2162:261-281. doi: 10.1007/978-1-0716-0687-2_15.
7
CRISPR/Cas gene therapy.
J Cell Physiol. 2021 Apr;236(4):2459-2481. doi: 10.1002/jcp.30064. Epub 2020 Sep 22.
9
Rabbit models for biomedical research revisited via genome editing approaches.
J Reprod Dev. 2017 Oct 18;63(5):435-438. doi: 10.1262/jrd.2017-053. Epub 2017 Jun 2.
10
[Genome editing with programmable site-specific nucleases].
Uirusu. 2014;64(1):75-82. doi: 10.2222/jsv.64.75.

引用本文的文献

2
An Update on Animal Models of Osteogenesis Imperfecta.
Calcif Tissue Int. 2022 Oct;111(4):345-366. doi: 10.1007/s00223-022-00998-6. Epub 2022 Jun 29.
3
A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders.
Front Endocrinol (Lausanne). 2021 Aug 13;12:709711. doi: 10.3389/fendo.2021.709711. eCollection 2021.

本文引用的文献

1
Secondary osteons scale allometrically in mammalian humerus and femur.
R Soc Open Sci. 2017 Nov 8;4(11):170431. doi: 10.1098/rsos.170431. eCollection 2017 Nov.
2
Induced expression from the endogenous locus causes fibrous dysplasia by up-regulating Wnt/β-catenin signaling.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E418-E427. doi: 10.1073/pnas.1714313114. Epub 2017 Nov 20.
3
Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.
J Bone Miner Res. 2017 May;32(5):939-950. doi: 10.1002/jbmr.3077. Epub 2017 Jan 31.
4
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.
Mol Cell. 2016 Aug 4;63(3):355-70. doi: 10.1016/j.molcel.2016.07.004.
5
CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH).
Hum Mol Genet. 2016 Jul 1;25(13):2661-2671. doi: 10.1093/hmg/ddw125. Epub 2016 Apr 28.
7
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.
8
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
9
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
Nat Rev Mol Cell Biol. 2016 Jan;17(1):5-15. doi: 10.1038/nrm.2015.2. Epub 2015 Dec 16.
10
Osteogenesis imperfecta.
Lancet. 2016 Apr 16;387(10028):1657-71. doi: 10.1016/S0140-6736(15)00728-X. Epub 2015 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验