KU Leuven Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA 19486, United States.
Eur J Pharm Biopharm. 2018 Aug;129:104-110. doi: 10.1016/j.ejpb.2018.05.026. Epub 2018 May 24.
In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds, taking into account interindividual variability. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in total FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced in samples that contained mainly vesicles alongside the micelles. Current fed state simulated intestinal fluids do not contain the larger colloids observed in the lipid layer of FeHIF and can only simulate the solubilizing capacity of the micellar layer of FeHIF. While the importance of drug molecules solubilized in the micellar layer of postprandial intestinal fluids for absorption has been extensively demonstrated previously, the in-vivo relevance of drug solubilization in the lipid layer is currently unclear. In the dynamic environment of the human gastrointestinal tract, drug initially entrapped in larger postprandial colloids may become available for absorption upon lipid digestion and uptake. The current study, demonstrating the substantial solubilization of lipophilic compounds in the larger colloids of postprandial intestinal fluids, warrants further research in this field.
除了个体肠道液成分外,胶体结构还负责提高亲脂性化合物的溶解度。本研究旨在探讨进食状态下人体肠道液(FeHIF)的超微结构与其对亲脂性化合物的增溶能力之间的关系,同时考虑个体间的变异性。为此,使用来自 10 名已知组成和超微结构的健康志愿者的 FeHIF 样本,以确定四种亲脂性化合物的溶解度。鉴于关注的重点是溶解度和超微结构,该研究仔细考虑了溶解度测定方法与胶体组成和 FeHIF 的增溶能力之间的关系。为了确定人肠道液和模拟肠道液的增溶能力,将感兴趣的化合物饱和样品,摇动 24 小时,然后离心。当使用 FeHIF 时,在 FeHIF 的胶束层中测定溶解度,即在去除上层(脂质)层后(标准程序),以及在总 FeHIF 中(不去除上层)。使用 HPLC-UV/荧光法测定化合物浓度。为了将增溶能力与超微结构联系起来,在用离心和去除上层(脂质)之前和之后,使用透射电子显微镜(TEM)对所有人类和模拟液进行成像。比较个体 FeHIF 样本的超微结构和增溶能力表明,进食后肠道条件的个体间变异性很高。去除上层后对 FeHIF 的成像清楚地表明,只有胶束结构留在下层。这一观察结果表明,较大的胶体,如囊泡和脂质滴,包含在上层脂质层中。大多数 FeHIF 样本的增溶能力随着包含该脂质层而显著增加。当包含脂质层时,增溶能力的相对增加在主要包含囊泡和胶束的样本中最为明显。目前的进食状态模拟肠道液不包含在 FeHIF 的脂质层中观察到的较大胶体,并且只能模拟 FeHIF 的胶束层的增溶能力。虽然先前已经广泛证明了在餐后肠道液的胶束层中溶解的药物分子对吸收的重要性,但药物在脂质层中的溶解在体内的相关性目前尚不清楚。在人类胃肠道的动态环境中,最初被较大的餐后胶体包裹的药物可能会在脂质消化和吸收后变得可用于吸收。本研究表明,亲脂性化合物在餐后肠道液的较大胶体中的大量溶解,值得在该领域进行进一步研究。