Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
Biochimie. 2018 Aug;151:42-44. doi: 10.1016/j.biochi.2018.05.011. Epub 2018 May 25.
S-Alk(en)yl-l-cysteine sulfoxides, initially found in plants of the genus Allium, are converted to antimicrobial thiosulfinates by pyridoxal 5'-phosphate(PLP)-dependent alliinase (EC 4.4.1.4). It was found that methionine γ-lyase (MGL, EC 4.4.1.11) catalyzes the β-elimination reaction of (±)-S-alk(en)yl-l-cysteine sulfoxides to yield thiosulfinates. The efficient catalyst for the production of thiosulfinates, C115H mutant MGL, developed in our previous work, cleaves S-alk(en)yl-l-cysteine sulfoxides more effectively than the wild type enzyme. Thiosulfinates generated by the C115H MGL/sulfoxide system have demonstrated growth inhibition of Gram-positive, Gram-negative bacteria and clinical isolates of pathogenic bacteria from mice. In search of a more effective system for production of antibacterial thiosulfinates we synthesized S-substituted analogues of l-cysteine sulfoxide with a longer side chains - (±)-S-propyl-l-cysteine sulfoxide ((±)-propiin) and (±)-S-n-butyl-l-cysteine sulfoxide ((±)-butiin) and determined catalytic parameters of the β-elimination reaction of two sulfoxides. It was found that C115H MGL cleaves (±)-propiin with the highest rate, as compared to other (±)-S-alk(en)yl-l-cysteine sulfoxides. Studies on interaction of the enzyme with (+)- or (-)-S-alk(en)yl-l-cysteine sulfoxides revealed that C115H MGL can decompose both diastereomers equally. The antibacterial activity of the mixture of the mutant MGL with (±)-propiin is comparable with those of the mixtures with S-allyl-l-cysteine sulfoxide (alliin) and S-methyl-l-cysteine sulfoxide (methiin). The results make MGL/sulfoxide system more advantageous in preparing antibacterial thiosulfinates as compared to alliinase-based system, which preferably cleaves naturally occurring (+)-sulfoxides.
S-烯丙基-L-半胱氨酸亚砜最初在葱属植物中发现,经吡哆醛 5′-磷酸(PLP)依赖性蒜氨酸酶(EC 4.4.1.4)转化为抗菌性的硫代亚磺酸酯。研究发现甲硫氨酸γ-裂解酶(MGL,EC 4.4.1.11)催化(±)-S-烯丙基-L-半胱氨酸亚砜的β-消除反应生成硫代亚磺酸酯。在我们之前的工作中,开发了一种有效的硫代亚磺酸酯生产用催化剂 C115H 突变体 MGL,它比野生型酶更有效地切割 S-烯丙基-L-半胱氨酸亚砜。由 C115H MGL/亚砜体系生成的硫代亚磺酸酯对革兰氏阳性菌、革兰氏阴性菌和从老鼠身上分离出的临床致病菌具有生长抑制作用。为了寻找更有效的抗菌性硫代亚磺酸酯生产体系,我们合成了具有更长侧链的 L-半胱氨酸亚砜的 S-取代类似物——(±)-S-丙基-L-半胱氨酸亚砜((±)-propiin)和(±)-S-正丁基-L-半胱氨酸亚砜((±)-butiin),并确定了两种亚砜β-消除反应的催化参数。结果发现,与其他(±)-S-烯丙基-L-半胱氨酸亚砜相比,C115H MGL 以最高的速率切割(±)-propiin。对酶与(+)-或(-)-S-烯丙基-L-半胱氨酸亚砜相互作用的研究表明,C115H MGL 可以平等地分解两种非对映异构体。突变 MGL 与(±)-propiin 的混合物的抗菌活性与与 S-烯丙基-L-半胱氨酸亚砜(alliin)和 S-甲基-L-半胱氨酸亚砜(methiin)的混合物的抗菌活性相当。与基于蒜氨酸酶的体系相比,MGL/亚砜体系在制备抗菌性硫代亚磺酸酯方面更具优势,因为该体系更有利于切割天然存在的(+)-亚砜。