Suppr超能文献

从正例和未标记袋中进行多示例学习的凸公式化。

Convex formulation of multiple instance learning from positive and unlabeled bags.

机构信息

Department of Computer Science, The University of Tokyo, Japan; Center for Advanced Intelligence Project, RIKEN, Japan.

Department of Complexity Science and Engineering, The University of Tokyo, Japan; Center for Advanced Intelligence Project, RIKEN, Japan.

出版信息

Neural Netw. 2018 Sep;105:132-141. doi: 10.1016/j.neunet.2018.05.001. Epub 2018 May 24.

Abstract

Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization, and medical diagnosis. Most of the previous work for MIL assume that training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU classification (positive and unlabeled classification) can address this problem. In this paper, we propose a convex PU classification method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computation costs than an existing method for PU-MIL.

摘要

多示例学习(MIL)是传统监督学习问题的一种变体,其中数据(称为袋)由子元素(称为实例)组成,并且只有袋标签可用。MIL 有多种应用,如基于内容的图像检索、文本分类和医学诊断。MIL 的大多数先前工作都假设训练袋是完全标记的。然而,在实际情况下,通常很难获得足够数量的标记袋,而有许多未标记的袋可用。一种称为 PU 分类(正例和未标记分类)的学习框架可以解决这个问题。在本文中,我们提出了一种凸 PU 分类方法来解决 MIL 问题。实验表明,与现有的 PU-MIL 方法相比,所提出的方法具有更低的计算成本和更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验