Giarmarco Michelle M, Cleghorn Whitney M, Hurley James B, Brockerhoff Susan E
Department of Biochemistry, University of Washington.
Department of Biochemistry, University of Washington; Department of Ophthalmology, University of Washington.
J Vis Exp. 2018 May 9(135):56977. doi: 10.3791/56977.
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca, and energy homeostasis.
视网膜是一种复杂的组织,它启动并整合视觉的第一步。视网膜细胞功能障碍是许多致盲疾病的标志,未来的治疗取决于对不同视网膜细胞正常功能的基本理解。用生化方法获取此类信息已被证明很困难,因为在视网膜细胞环境中特定细胞类型的作用会减弱。由于越来越多的基因编码荧光生物传感器,活视网膜成像可以在亚细胞水平上提供许多生物过程的视图。然而,迄今为止,这项技术仅限于蝌蚪和斑马鱼幼虫、分离视网膜的最外层视网膜层,或活体动物视网膜的低分辨率成像。在这里,我们介绍一种从成年斑马鱼生成活的离体视网膜切片以通过共聚焦显微镜进行活成像的方法。这种制备方法产生的横向切片包含所有视网膜层和大多数细胞类型,可用于通过灌注进行共聚焦成像实验。在特定视网膜细胞类型或细胞器中表达荧光蛋白或生物传感器的转基因斑马鱼用于从完整视网膜中提取单细胞信息。此外,视网膜切片可以加载荧光指示剂染料,增加了该方法的通用性。该方案是为对斑马鱼视锥光感受器内的钙进行成像而开发的,但使用适当的标记物,它可以适用于测量米勒细胞、双极细胞和水平细胞、小胶质细胞、无长突细胞或视网膜神经节细胞中的钙或代谢物。视网膜色素上皮从切片中去除,因此该方法不适用于研究该细胞类型。通过练习,可以从一只动物生成连续切片用于多个实验。这种适应性强的技术为回答许多关于视网膜细胞生物学、钙和能量稳态的问题提供了一个强大的工具。