Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy.
Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany.
New Phytol. 2018 Dec;220(4):1031-1046. doi: 10.1111/nph.15230. Epub 2018 May 28.
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
内容摘要 1031 I. 引言 1031 II. 种间交流促进共生 1032 III. 关键代谢物在 AM 共生中的营养和调节作用 1035 IV. 植物-真菌基因型组合决定共生的结果 1039 V. 观点 1039 致谢 1041 参考文献 1041 摘要:丛枝菌根(AM)共生的进化和生态成功依赖于有效的多因素交流系统以识别伙伴,以及精细的、互惠的代谢调控,以达到最佳的功能整合。除了 Strigolactones 外,植物释放的 N-乙酰葡萄糖胺衍生物最近被认为可以在预接触阶段触发真菌的重编程。值得注意的是,基于 N-乙酰葡萄糖胺的扩散分子也是 AM 真菌(AMF)产生的共生信号,关于植物感知这些信号的机制的线索正在出现。AMF 基因组和转录组包含一系列可能具有保守和 AMF 或宿主植物特异性功能的假定效应基因。养分交换是 AM 共生的关键特征。已经提出了一种真菌菌丝内磷酸盐运输的机制,并且根据养分转移和状态,首次获得了对根定植的调控机制的深入了解。最近发现 AMF 依赖于从宿主转移脂肪酸,这为它们的专性生物营养提供了令人信服的解释。新的研究强调了植物和真菌基因型对共生结果的重要性。这些发现为 AMF 在农业中的基础研究和应用开辟了新的视角。