Song W, Zhao L, Tao Y, Guo X, Jia J, He L, Huang Y, Zhu Y, Chen P, Qin H
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China.
School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
Genes Brain Behav. 2019 Feb;18(2):e12488. doi: 10.1111/gbb.12488. Epub 2018 Jun 29.
Nociceptive stimulus involuntarily interrupts concurrent activities. This interruptive effect is related to the protective function of nociception that is believed to be under stringent evolutionary pressure. To determine whether such interruptive effect is conserved in invertebrate and potentially uncover underlying neural circuits, we examined Drosophila melanogaster. Electric shock (ES) is a commonly used nociceptive stimulus for nociception related research in Drosophila. Here, we showed that background noxious ES dramatically interrupted odor response behaviors in a T-maze, which is termed blocking odor response by electric shock (BOBE). The interruptive effect is not odor specific. ES could interrupt both odor avoidance and odor approach. To identify involved brain areas, we focused on the odor avoidance to 3-OCT. By spatially abolishing neurotransmission with temperature sensitive Shibire , we found that mushroom bodies (MBs) are necessary for BOBE. Among the 3 major MB Kenyon cell (KCs) subtypes, α/β neurons and γ neurons but not α'/β' neurons are required for normal BOBE. Specifically, abolishing the neurotransmission of either α/β surface (α/β ), α/β core (α/β ) or γ dorsal (γ ) neurons alone is sufficient to abrogate BOBE. This pattern of MB subset requirement is distinct from that of aversive olfactory learning, indicating a specialized BOBE pathway. Consistent with this idea, BOBE was not diminished in several associative memory mutants and noxious ES interrupted both innate and learned odor avoidance. Overall, our results suggest that MB α/β and γ neurons are parts of a previously unappreciated central neural circuit that processes the interruptive effect of nociception.
伤害性刺激会不由自主地打断同时进行的活动。这种打断效应与伤害感受的保护功能有关,而伤害感受的保护功能被认为处于严格的进化压力之下。为了确定这种打断效应在无脊椎动物中是否保守,并有可能揭示潜在的神经回路,我们对黑腹果蝇进行了研究。电击(ES)是果蝇伤害感受相关研究中常用的伤害性刺激。在这里,我们表明背景有害电击会显著打断T迷宫中的气味反应行为,这被称为电击阻断气味反应(BOBE)。这种打断效应并非气味特异性的。电击可以打断气味回避和气味趋近。为了确定涉及的脑区,我们聚焦于对3-辛醇的气味回避。通过利用温度敏感的Shibire在空间上消除神经传递,我们发现蘑菇体(MBs)对于BOBE是必需的。在3种主要的蘑菇体肯扬细胞(KCs)亚型中,α/β神经元和γ神经元而非α'/β'神经元对于正常的BOBE是必需的。具体而言,单独消除α/β表面(α/β )、α/β核心(α/β )或γ背侧(γ )神经元的神经传递就足以消除BOBE。这种蘑菇体亚群需求模式与厌恶嗅觉学习的模式不同,表明存在一条专门的BOBE通路。与此观点一致的是,在几个联想记忆突变体中BOBE并未减弱,有害电击打断了先天和习得的气味回避。总体而言,我们的结果表明蘑菇体α/β和γ神经元是一个之前未被重视的中枢神经回路的一部分,该回路处理伤害感受的打断效应。