Suppr超能文献

采用电子束光刻技术对丝蛋白纳米线进行图案化处理。

Silk protein nanowires patterned using electron beam lithography.

机构信息

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond VA, 23284, United States of America.

出版信息

Nanotechnology. 2018 Aug 17;29(33):335301. doi: 10.1088/1361-6528/aac855. Epub 2018 May 29.

Abstract

Nanofabrication approaches to pattern proteins at the nanoscale are useful in applications ranging from organic bioelectronics to cellular engineering. Specifically, functional materials based on natural polymers offer sustainable and environment-friendly substitutes to synthetic polymers. Silk proteins (fibroin and sericin) have emerged as an important class of biomaterials for next generation applications owing to excellent optical and mechanical properties, inherent biocompatibility, and biodegradability. However, the ability to precisely control their spatial positioning at the nanoscale via high throughput tools continues to remain a challenge. In this study electron beam lithography (EBL) is used to provide nanoscale patterning using methacrylate conjugated silk proteins that are photoreactive 'photoresists' materials. Very low energy electron beam radiation can be used to pattern silk proteins at the nanoscale and over large areas, whereby such nanostructure fabrication can be performed without specialized EBL tools. Significantly, using conducting polymers in conjunction with these silk proteins, the formation of protein nanowires down to 100 nm is shown. These wires can be easily degraded using enzymatic degradation. Thus, proteins can be precisely and scalably patterned and doped with conducting polymers and enzymes to form degradable, organic bioelectronic devices.

摘要

在纳米尺度上对蛋白质进行图案设计的纳米制造方法在从有机生物电子学到细胞工程等应用中非常有用。具体来说,基于天然聚合物的功能材料为合成聚合物提供了可持续和环保的替代品。由于出色的光学和机械性能、固有生物相容性和可生物降解性,丝蛋白(丝素和丝胶)已成为下一代应用的一类重要生物材料。然而,通过高通量工具精确控制其在纳米尺度上的空间定位的能力仍然是一个挑战。在这项研究中,电子束光刻(EBL)用于使用丙烯酰胺共轭丝蛋白进行纳米级图案设计,这些丝蛋白是光反应性“光致抗蚀剂”材料。非常低能量的电子束辐射可用于在纳米尺度和大面积上对丝蛋白进行图案化,而无需专门的 EBL 工具即可进行这种纳米结构制造。重要的是,使用导电聚合物与这些丝蛋白结合,可以形成低至 100nm 的蛋白质纳米线。这些纳米线可以使用酶降解很容易地降解。因此,可以精确且可扩展地对蛋白质进行图案化和掺杂导电聚合物和酶,以形成可降解的有机生物电子器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验