Suppr超能文献

从头算分子动力学的石墨边缘/水界面 VO/VO 氧化还原反应机制的研究。

Ab Initio Metadynamics Study of the VO/VO Redox Reaction Mechanism at the Graphite Edge/Water Interface.

出版信息

ACS Appl Mater Interfaces. 2018 Jun 20;10(24):20621-20626. doi: 10.1021/acsami.8b05864. Epub 2018 Jun 8.

Abstract

Redox flow batteries (RFBs) are promising electrochemical energy storage systems, for which development is impeded by a poor understanding of redox reactions occurring at electrode/electrolyte interfaces. Even for the conventional all-vanadium RFB chemistry employing V/V and VO/VO couples, there is still no consensus about the reaction mechanism, electrode active sites, and rate-determining step. Herein, we perform Car-Parrinello molecular dynamics-based metadynamics simulations to unravel the mechanism of the VO/VO redox reaction in water at the oxygen-functionalized graphite (112̅0) edge surface serving as a representative carbon-based electrode. Our results suggest that during the battery discharge aqueous VO/VO species adsorb at the surface C-O groups as inner-sphere complexes, exhibiting faster adsorption/desorption kinetics than V/V, at least at low vanadium concentrations considered in our study. We find that this is because (i) VO/VO conversion does not involve the slow transfer of an oxygen atom, (ii) protonation of VO is spontaneous and coupled to interfacial electron transfer in acidic conditions to enable VO formation, and (iii) V found to be strongly bound to oxygen groups of the graphite surface features unfavorable desorption kinetics. In contrast, the reverse process taking place upon charging is expected to be more sluggish for the VO/VO redox couple because of both unfavorable deprotonation of the VO water ligands and adsorption/desorption kinetics.

摘要

氧化还原流电池(RFBs)是很有前途的电化学储能系统,但由于对电极/电解质界面处发生的氧化还原反应缺乏深入了解,其发展受到了阻碍。即使是采用 V/V 和 VO/VO 电对的传统全钒 RFB 化学,对于反应机制、电极活性位点和速率决定步骤,仍然没有共识。在这里,我们通过 Car-Parrinello 分子动力学基元动力学模拟来揭示在作为代表性碳基电极的氧功能化石墨(112̅0)边缘表面上水相 VO/VO 氧化还原反应的机制。我们的结果表明,在电池放电过程中,水相 VO/VO 物种作为内球络合物吸附在表面的 C-O 基团上,其吸附/解吸动力学比 V/V 快,至少在我们研究中考虑的低钒浓度下是这样。我们发现这是因为 (i) VO/VO 转化不涉及缓慢的氧原子转移,(ii) 在酸性条件下,VO 的质子化是自发的,并与界面电子转移耦合,以实现 VO 的形成,以及 (iii) V 被发现与石墨表面的氧基团强烈结合,导致不利于解吸的动力学。相比之下,由于 VO 水配体的不利去质子化和吸附/解吸动力学,充电时发生的相反过程预计对 VO/VO 氧化还原对更为缓慢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验