Liao Bo, Hu Xinliang, Xu Mengqing, Li Hongying, Yu Le, Fan Weizhen, Xing Lidan, Liao Youhao, Li Weishan
Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Laboratory of ETESPG (GHEI), and Innovative Platform for ITBMD (Guangzhou Municipality), School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China.
School of Chemistry and Materials Science , Hubei Engineering University , Xiaogan, Hubei 43200 , China.
J Phys Chem Lett. 2018 Jun 21;9(12):3434-3445. doi: 10.1021/acs.jpclett.8b01099. Epub 2018 Jun 8.
A novel electrolyte additive, 1-(2-cyanoethyl) pyrrole (CEP), has been investigated to improve the electrochemical performance of graphite/LiNiCoMnO cells cycling up to 4.5 V vs Li/Li. The 4.5 V cycling results present that after 50 cycles, up to 4.5 V capacity retention of the graphite/LiNiCoMnO cell is improved significantly from 27.4 to 81.5% when adding 1% CEP to baseline electrolyte (1 M LiPF in EC/EMC 1:2, by weight). Ex situ characterization results support the mechanism of CEP for enhancing the electrochemical performance. On one hand, the significant enhancement is ascribed to a formed superior cathode interfacial film by preferential oxidation of CEP on the cathode electrode surface suppressing electrolyte decomposition at high voltage. On the other hand, the duo Lewis base functional groups can effectively capture dissociation product PF from LiPF with the presence of an unavoidable trace amount of water or aprotic impurities in the electrolyte. Thus this mitigates the hydrofluoric acid (HF) generation that leads to the reduction of transition-metal dissolution in the electrolyte upon cycling at high voltage. The theoretical modeling suggests that CEP has a mechanism of stabilizing electrolyte via combination of -C≡N: functional group and HO. The work presented here also shows nuclear magnetic resonance spectra analysis to prove the capability of CEP reducing HF generation and X-ray photoelectron spectroscopy analysis to observe cathode surface composition.
一种新型电解质添加剂1-(2-氰基乙基)吡咯(CEP)已被研究用于改善石墨/LiNiCoMnO电池在相对于Li/Li高达4.5 V的循环过程中的电化学性能。4.5 V的循环结果表明,在50次循环后,当向基线电解质(1 M LiPF6在EC/EMC中,重量比为1:2)中添加1%的CEP时,石墨/LiNiCoMnO电池高达4.5 V的容量保持率从27.4%显著提高到81.5%。非原位表征结果支持了CEP增强电化学性能的机理。一方面,显著的增强归因于通过CEP在阴极电极表面的优先氧化形成了优异的阴极界面膜,抑制了高电压下电解质的分解。另一方面,在电解质中不可避免地存在微量水或非质子杂质的情况下,双路易斯碱官能团可以有效地捕获LiPF6解离产生的PF5。因此,这减轻了氢氟酸(HF)的产生,而氢氟酸的产生会导致在高电压循环时过渡金属在电解质中的溶解减少。理论建模表明,CEP具有通过-C≡N:官能团和HO的结合来稳定电解质的机制。这里展示的工作还通过核磁共振光谱分析来证明CEP减少HF产生的能力,并通过X射线光电子能谱分析来观察阴极表面组成。