Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada.
Department of Anthropology, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2018 May 29;13(5):e0198076. doi: 10.1371/journal.pone.0198076. eCollection 2018.
Animal paths are analogous to intractable mathematical problems like the Traveling Salesman Problem (TSP) and the shortest path problem (SPP). Both the TSP and SPP require an individual to find the shortest path through multiple targets but the TSP demands a return to the start, while the SPP does not. Vervet monkeys are very efficient in solving TSPs but this species is a multiple central place forager that does not always return to the same sleeping site and thus theoretically should be selected to find solutions to SPPs rather than TSPs. We examined path choice by wild vervets in an SPP experimental array where the shortest paths usually differed from those consistent with common heuristic strategies, the nearest-neighbor rule (NNR-go to the closest resource that has not been visited), and the convex hull (put a mental loop around sites, adding inner targets in order of distance from the edge)-an efficient strategy for TSPs but not SPPs. In addition, humans solving SPPs use an initial segment strategy (ISS-choose the straightest path at the beginning, only turning when necessary) and we looked at vervet paths consistent with this strategy. In 615 trials by single foragers, paths usually conformed to the NNR and rarely the slightly more efficient convex hull, supporting that vervets may be selected to solve SPPs. Further, like humans solving SPPs, vervets showed a tendency to use the ISS. Paths consistent with heuristics dropped off sharply, and use of the shortest path increased, when heuristics led to longer paths showing trade-offs in efficiency versus cognitive load. Two individuals out of 17, found the shortest path most often, showing inter-individual variation in path planning. Given support for the NNR and the ISS, we propose a new rule-of-thumb termed the "region heuristic" that vervets may apply in multi-destination routes.
动物路径类似于难以解决的数学问题,如旅行商问题 (TSP) 和最短路径问题 (SPP)。TSP 和 SPP 都要求个体找到通过多个目标的最短路径,但 TSP 要求返回起点,而 SPP 则不需要。长尾猕猴在解决 TSP 方面非常高效,但这种物种是多中央栖息地觅食者,并不总是返回同一个睡眠地点,因此从理论上讲,它应该被选择来寻找 SPP 的解决方案,而不是 TSP 的解决方案。我们在 SPP 实验阵列中检查了野生长尾猕猴的路径选择,其中最短路径通常与常见启发式策略、最近邻规则 (NNR-前往未访问过的最近资源) 和凸壳 (在站点周围画一个心理循环,按距离边缘的顺序添加内部目标)-一种有效的 TSP 策略,但不适用于 SPP。此外,解决 SPP 的人类使用初始段策略 (ISS-在开始时选择最直的路径,仅在必要时转弯),我们研究了与该策略一致的长尾猕猴路径。在 17 名单个觅食者的 615 次试验中,路径通常符合 NNR,很少符合稍高效的凸壳,这表明长尾猕猴可能被选择来解决 SPP。此外,与解决 SPP 的人类一样,长尾猕猴也表现出使用 ISS 的趋势。当启发式导致更长的路径,在效率与认知负荷之间进行权衡时,与启发式一致的路径急剧下降,最短路径的使用增加。在 17 名个体中,有两名个体最常找到最短路径,显示出个体间路径规划的差异。鉴于对 NNR 和 ISS 的支持,我们提出了一个新的经验法则,称为“区域启发式”,长尾猕猴可能在多目的地路线中应用该法则。