Makarov Dmitry N
Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, 163002, Russia.
Sci Rep. 2018 May 29;8(1):8204. doi: 10.1038/s41598-018-26650-8.
At present, there are many methods for obtaining quantum entanglement of particles with an electromagnetic field. Most methods have a low probability of quantum entanglement and not an exact theoretical apparatus based on an approximate solution of the Schrodinger equation. There is a need for new methods for obtaining quantum-entangled particles and mathematically accurate studies of such methods. In this paper, a quantum harmonic oscillator (for example, an electron in a magnetic field) interacting with a quantized electromagnetic field is considered. Based on the exact solution of the Schrodinger equation for this system, it is shown that for certain parameters there can be a large quantum entanglement between the electron and the electromagnetic field. Quantum entanglement is analyzed on the basis of a mathematically exact expression for the Schmidt modes and the Von Neumann entropy.
目前,有许多用于使粒子与电磁场获得量子纠缠的方法。大多数方法的量子纠缠概率较低,且并非基于薛定谔方程近似解的精确理论装置。需要有获得量子纠缠粒子的新方法以及对此类方法进行数学上精确的研究。本文考虑了一个与量子化电磁场相互作用的量子谐振子(例如,磁场中的一个电子)。基于该系统薛定谔方程的精确解,结果表明对于某些参数,电子与电磁场之间可能存在大量的量子纠缠。基于施密特模式和冯·诺依曼熵的数学精确表达式对量子纠缠进行了分析。