Suppr超能文献

计算方法在靶向细胞重编程中预测关键转录因子中的应用(综述)。

Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review).

机构信息

Tecnológico de Monterrey, Escuela de Medicina, Monterrey, Nuevo León 64710, México.

出版信息

Mol Med Rep. 2018 Aug;18(2):1225-1237. doi: 10.3892/mmr.2018.9092. Epub 2018 May 29.

Abstract

There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re‑induction of induced pluripotent stem cells has been used to obtain cells expressing similar profiles to those of the desired types. Therefore, a specific cocktail of transcription factors (TFs) is required for induction. Nevertheless, identifying the correct combination of TFs is difficult. Although certain computational approaches have been proposed for this task, their methods are complex, and corresponding implementations are difficult to use and generalize for specific source or target cell types. In the present review four computational approaches that have been proposed to obtain likely TFs were compared and discussed. A simplified view of the computational complexity of these methods is provided that consists of three basic ideas: i) The definition of target and non‑target cell types; ii) the estimation of candidate TFs; and iii) filtering candidates. This simplified view was validated by analyzing a well‑documented cardiomyocyte differentiation. Subsequently, these reviewed methods were compared when applied to an unknown differentiation of corneal endothelial cells. The generated results may provide important insights for laboratory assays. Data and computer scripts that may assist with direct conversions in other cell types are also provided.

摘要

在再生医学和生物研究中需要特定的细胞类型。通常,特定的细胞类型不容易获得,或者获得的数量不足以进行研究。因此,通过直接转化(转分化)或重诱导多能干细胞来重新编程已被用于获得表达与所需类型相似特征的细胞。因此,需要特定的转录因子(TFs)鸡尾酒用于诱导。然而,确定正确的 TF 组合是困难的。尽管已经提出了某些用于该任务的计算方法,但它们的方法很复杂,并且相应的实现难以用于特定的源或靶细胞类型。在本综述中,比较和讨论了四种已提出的用于获得可能的 TF 的计算方法。提供了这些方法的计算复杂性的简化视图,包括三个基本思想:i)目标和非目标细胞类型的定义;ii)候选 TF 的估计;和 iii)候选的过滤。通过分析一个有充分记录的心肌细胞分化验证了这种简化视图。随后,当将这些方法应用于未知的角膜内皮细胞分化时,对它们进行了比较。生成的结果可能为实验室检测提供重要的见解。还提供了可用于其他细胞类型直接转化的数据和计算机脚本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e1d/6072137/d08a10e5f72b/MMR-18-02-1225-g00.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验