基于群组的多轨迹建模。

Group-based multi-trajectory modeling.

机构信息

1 The School of Public Policy & Management, Heinz College, Carnegie Mellon University, Pittsburgh, PA, USA.

2 Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

出版信息

Stat Methods Med Res. 2018 Jul;27(7):2015-2023. doi: 10.1177/0962280216673085. Epub 2016 Oct 17.

Abstract

Identifying and monitoring multiple disease biomarkers and other clinically important factors affecting the course of a disease, behavior or health status is of great clinical relevance. Yet conventional statistical practice generally falls far short of taking full advantage of the information available in multivariate longitudinal data for tracking the course of the outcome of interest. We demonstrate a method called multi-trajectory modeling that is designed to overcome this limitation. The method is a generalization of group-based trajectory modeling. Group-based trajectory modeling is designed to identify clusters of individuals who are following similar trajectories of a single indicator of interest such as post-operative fever or body mass index. Multi-trajectory modeling identifies latent clusters of individuals following similar trajectories across multiple indicators of an outcome of interest (e.g., the health status of chronic kidney disease patients as measured by their eGFR, hemoglobin, blood CO levels). Multi-trajectory modeling is an application of finite mixture modeling. We lay out the underlying likelihood function of the multi-trajectory model and demonstrate its use with two examples.

摘要

识别和监测多种疾病生物标志物和其他影响疾病进程、行为或健康状况的临床重要因素具有重要的临床意义。然而,传统的统计实践通常远远不能充分利用多变量纵向数据中提供的信息来跟踪感兴趣的结果的进程。我们展示了一种称为多轨迹建模的方法,旨在克服这一限制。该方法是基于群组的轨迹建模的推广。基于群组的轨迹建模旨在识别出遵循单个感兴趣指标(如术后发热或体重指数)相似轨迹的个体群组。多轨迹建模则识别出在感兴趣结果的多个指标(例如,慢性肾脏病患者的 eGFR、血红蛋白、血液 CO 水平等健康状况)上遵循相似轨迹的个体潜在群组。多轨迹建模是有限混合模型的应用。我们列出了多轨迹模型的基本似然函数,并通过两个示例演示了它的用法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索