Suppr超能文献

前交叉韧带(ACL)缺失和重建膝关节中半月板-囊和半月板-胫骨病变的影响:一项生物力学研究。

Effect of Meniscocapsular and Meniscotibial Lesions in ACL-Deficient and ACL-Reconstructed Knees: A Biomechanical Study.

机构信息

The Steadman Clinic, Vail, Colorado, USA.

Steadman Philippon Research Institute, Vail, Colorado, USA.

出版信息

Am J Sports Med. 2018 Aug;46(10):2422-2431. doi: 10.1177/0363546518774315. Epub 2018 May 30.

Abstract

BACKGROUND

Ramp lesions were initially defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus at the meniscocapsular junction. The separate biomechanical roles of the meniscocapsular and meniscotibial attachments of the posterior medial meniscus have not been fully delineated.

PURPOSE

To evaluate the biomechanical effects of meniscocapsular and meniscotibial lesions of the posterior medial meniscus in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees and the effect of repair of ramp lesions.

STUDY DESIGN

Controlled laboratory study.

METHODS

Twelve matched pairs of human cadaveric knees were evaluated with a 6 degrees of freedom robotic system. All knees were subjected to an 88-N anterior tibial load, internal and external rotation torques of 5 N·m, and a simulated pivot-shift test of 10-N valgus force coupled with 5-N·m internal rotation. The paired knees were randomized to the cutting of either the meniscocapsular or the meniscotibial attachments after ACL reconstruction (ACLR). Eight comparisons of interest were chosen before data analysis was conducted. Data from the intact state were compared with data from the subsequent states. The following states were tested: intact (n = 24), ACL deficient (n = 24), ACL deficient with a meniscocapsular lesion (n = 12), ACL deficient with a meniscotibial lesion (n = 12), ACL deficient with both meniscocapsular and meniscotibial lesions (n = 24), ACLR with both meniscocapsular and meniscotibial lesions (n = 16), and ACLR with repair of both meniscocapsular and meniscotibial lesions (n = 16). All states were compared with the previous states. For the repair and reconstruction states, only the specimens that underwent repair were compared with their intact and sectioned states, thus excluding the specimens that did not undergo repair.

RESULTS

Cutting the meniscocapsular and meniscotibial attachments of the posterior horn of the medial meniscus significantly increased anterior tibial translation in ACL-deficient knees at 30° ( P ≤ .020) and 90° ( P < .005). Cutting both the meniscocapsular and meniscotibial attachments increased tibial internal (all P > .004) and external (all P < .001) rotation at all flexion angles in ACL-reconstructed knees. Reconstruction of the ACL in the presence of meniscocapsular and meniscotibial tears restored anterior tibial translation ( P > .053) but did not restore internal rotation ( P < .002), external rotation ( P < .002), and the pivot shift ( P < .05). To restore the pivot shift, an ACLR and a concurrent repair of the meniscocapsular and meniscotibial lesions were both necessary. Repairing the meniscocapsular and meniscotibial lesions after ACLR did not restore internal rotation and external rotation at angles >30°.

CONCLUSION

Meniscocapsular and meniscotibial lesions of the posterior horn of the medial meniscus increased knee anterior tibial translation, internal and external rotation, and the pivot shift in ACL-deficient knees. The pivot shift was not restored with an isolated ACLR but was restored when performed concomitantly with a meniscocapsular and meniscotibial repair. However, the effect of this change was minimal; although statistical significance was found, the overall clinical significance remains unclear. The ramp lesion repair used in this study failed to restore internal rotation and external rotation at higher knee flexion angles. Further studies should examine improved meniscus repair techniques for root tears combined with ACLRs.

CLINICAL RELEVANCE

Meniscal ramp lesions should be repaired at the time of ACLR to avoid continued knee instability (anterior tibial translation) and to eliminate the pivot-shift phenomenon.

摘要

背景

半月板横嵴损伤最初被定义为内侧半月板后角在半月板与关节囊连接处的外周附着处撕裂。内侧半月板的半月板与关节囊和半月板与胫骨附着的单独生物力学作用尚未完全阐明。

目的

评估前交叉韧带(ACL)缺失和 ACL 重建膝关节中内侧半月板后角的半月板与关节囊和半月板与胫骨附着损伤的生物力学效应,以及横嵴损伤修复的效果。

研究设计

对照实验室研究。

方法

使用六自由度机器人系统评估 12 对配对的人尸体膝关节。所有膝关节均受到 88-N 的胫骨前负荷、5-N·m 的内、外旋转扭矩以及 10-N 的外翻力与 5-N·m 的内旋转扭矩耦合的模拟枢轴移位试验。配对的膝关节在 ACL 重建(ACLR)后随机进行半月板与关节囊或半月板与胫骨附着的切割。在进行数据分析之前,选择了 8 个感兴趣的比较。将完整状态的数据与随后状态的数据进行比较。测试了以下状态:完整(n = 24)、ACL 缺失(n = 24)、ACL 缺失伴半月板与关节囊损伤(n = 12)、ACL 缺失伴半月板与胫骨附着损伤(n = 12)、ACL 缺失伴半月板与关节囊和半月板与胫骨附着损伤(n = 24)、ACLR 伴半月板与关节囊和半月板与胫骨附着损伤(n = 16)以及 ACLR 伴半月板与关节囊和半月板与胫骨附着修复(n = 16)。所有状态均与前一状态进行比较。对于修复和重建状态,仅比较接受修复的标本与其完整和部分状态,从而排除未接受修复的标本。

结果

ACL 缺失的膝关节中,切割内侧半月板后角的半月板与关节囊和半月板与胫骨附着显著增加了胫骨前向位移,在 30°(P ≤.020)和 90°(P <.005)时增加。在 ACL 重建的膝关节中,切割半月板与关节囊和半月板与胫骨附着增加了所有屈曲角度的胫骨内旋(均 P >.004)和外旋(均 P <.001)。ACL 伴半月板与关节囊和半月板与胫骨附着撕裂的重建恢复了胫骨前向位移(P >.053),但未恢复内旋(P <.002)、外旋(P <.002)和枢轴移位(P <.05)。为了恢复枢轴移位,ACL 重建和同时修复半月板与关节囊和半月板与胫骨附着损伤都是必要的。ACLR 后修复半月板与关节囊和半月板与胫骨附着损伤并不能恢复 30°以上角度的内旋和外旋。

结论

内侧半月板后角的半月板与关节囊和半月板与胫骨附着损伤增加了 ACL 缺失膝关节的胫骨前向位移、内旋和外旋以及枢轴移位。单独的 ACLR 并不能恢复枢轴移位,但与半月板与关节囊和半月板与胫骨附着修复同时进行时可以恢复。然而,这种变化的效果很小;尽管发现了统计学意义,但总体临床意义仍不清楚。本研究中使用的半月板横嵴损伤修复未能恢复更高膝关节屈曲角度的内旋和外旋。进一步的研究应检查结合 ACLR 的根撕裂的改进半月板修复技术。

临床意义

ACL 重建时应修复半月板横嵴损伤,以避免持续的膝关节不稳定(胫骨前向位移)并消除枢轴移位现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验