Suppr超能文献

使用“双人饮食”智能手机应用优化孕期体重增加:一项随机对照试验的方案

Optimizing Gestational Weight Gain With the Eating4Two Smartphone App: Protocol for a Randomized Controlled Trial.

作者信息

Davis Deborah, Davey Rachel, Williams Lauren T, Foureur Maralyn, Nohr Ellen, Knight-Agarwal Catherine, Lawlis Tanya, Oats Jeremy, Skouteris Helen, Fuller-Tyszkiewicz Matthew

机构信息

University of Canberra, Canberra, Australia.

ACT Government Health Directorate, Canberra, Australia.

出版信息

JMIR Res Protoc. 2018 May 30;7(5):e146. doi: 10.2196/resprot.9920.

Abstract

BACKGROUND

Approximately 50% of women gain excessive weight in pregnancy. Optimizing gestational weight gain is important for the short- and long-term health of the childbearing woman and her baby. Despite this, there is no recommendation for routine weighing in pregnancy, and weight is a topic that many maternity care providers avoid. Resource-intensive interventions have mainly targeted overweight and obese women with variable results. Few studies have examined the way that socioeconomic status might influence the effectiveness or acceptability of an intervention to participants. Given the scale of the problem of maternal weight gain, maternity services will be unlikely to sustain resource intensive interventions; therefore, innovative strategies are required to assist women to manage weight gain in pregnancy.

OBJECTIVE

The primary aim of the trial was to examine the effectiveness of the Eating4Two smartphone app in assisting women of all body mass index categories to optimize gestational weight gain. Secondary aims include comparing childbirth outcomes and satisfaction with antenatal care and examining the way that relative advantage and disadvantage might influence engagement with and acceptability of the intervention.

METHODS

This randomized controlled trial will randomize 1330 women to control or intervention groups in 3 regions of different socioeconomic status. Women will be recruited from clinical and social media sites. The intervention group will be provided with access to the Eating4Two mobile phone app which provides nutrition and dietary information specifically tailored for pregnancy, advice on food serving sizes, and a graph that illustrates women's weight change in relation to the range recommended by the Institute of Medicine. Women will be encouraged to use the app to prompt conversations with their maternity care providers about weight gain in pregnancy. The control group will receive routine antenatal care.

RESULTS

Recruitment has commenced though the recruitment rate is slower than expected. Additional funds are required to employ research assistants and promote the study in an advertising campaign.

CONCLUSION

Feasibility testing highlighted the inadequacy of the original recruitment strategy and the need to provide the app in both major platforms (Android and iOS). Smartphone technologies may offer an effective alternative to resource intensive strategies for assisting women to optimize weight gain in pregnancy.

TRIAL REGISTRATION

Australian New Zealand Clinical Trials Registry ACTRN12617000169347; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=371470 (Archived by WebCite at http://www.webcitation.org /6zDvgw5bo).

REGISTERED REPORT IDENTIFIER

RR1-10.2196/9920.

摘要

背景

约50%的女性在孕期体重增加过多。优化孕期体重增加对育龄妇女及其婴儿的短期和长期健康都很重要。尽管如此,目前尚无孕期常规称重的建议,而且体重是许多产科护理人员避而不谈的话题。资源密集型干预措施主要针对超重和肥胖女性,效果不一。很少有研究探讨社会经济地位可能影响参与者对干预措施的有效性或可接受性的方式。鉴于孕产妇体重增加问题的规模,产科服务不太可能维持资源密集型干预措施;因此,需要创新策略来帮助女性控制孕期体重增加。

目的

该试验的主要目的是研究“孕期饮食42”智能手机应用程序在帮助所有体重指数类别的女性优化孕期体重增加方面的有效性。次要目的包括比较分娩结局和对产前护理的满意度,并研究相对优势和劣势可能影响对干预措施的参与度和可接受性的方式。

方法

这项随机对照试验将把1330名女性随机分为对照组和干预组,这3组来自不同社会经济地位的地区。女性将从临床和社交媒体网站招募。干预组将获得“孕期饮食42”手机应用程序的使用权限,该应用程序提供专门为孕期量身定制的营养和饮食信息、食物份量建议,以及一张图表,说明女性体重变化与医学研究所建议范围的关系。将鼓励女性使用该应用程序,以促进她们与产科护理人员就孕期体重增加问题进行交流。对照组将接受常规产前护理。

结果

招募工作已经开始,不过招募速度比预期慢。需要额外资金来雇佣研究助理,并在广告活动中宣传该研究。

结论

可行性测试凸显了原招募策略的不足,以及在两大主要平台(安卓和iOS)上提供该应用程序的必要性。智能手机技术可能为帮助女性优化孕期体重增加的资源密集型策略提供一种有效的替代方案。

试验注册

澳大利亚新西兰临床试验注册中心ACTRN12617000169347;https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=371470(由WebCite存档于http://www.webcitation.org /6zDvgw5bo)。

注册报告标识符

RR1-10.2196/9920。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcfe/6000478/a17dde24c9c8/resprot_v7i5e146_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验