Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
Photochem Photobiol Sci. 2018 Jul 11;17(7):903-909. doi: 10.1039/c8pp00048d.
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
设计稳健且廉价的分子光催化剂,将丰富且稳定的分子(如 H2O 和 CO2)转化为能量载体,是当今科学家面临的主要基础问题之一。突出的挑战是将单个光诱导电荷分离事件与在催化单元中顺序积累氧化还原当量相结合,以进行多电子催化反应。在此,通过纳秒泵浦-探测实验的双重激发,研究了在可逆电子受体存在下,由卟啉发色团和基于钌的催化剂组成的分子偶联物中的光诱导电荷转移和电荷积累。由于第二次激发后迅速向敏化剂发生反向电子转移,以及正向光驱动电子转移反应的驱动力较低,因此无法获得累积电荷转移态。这种方法可以深入了解两次连续光吸收后的弛豫机制,阐明限制电荷积累效率的不希望发生的电子转移反应。本研究是朝着提高用于光诱导电荷积累的分子光催化剂的合成策略迈出的一步,更广泛地说,也是朝着太阳能转换迈出的一步。