Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - IRD), 1919 route de Mende, 34293, Montpellier, France.
Geobotany, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.
New Phytol. 2018 Sep;219(4):1338-1352. doi: 10.1111/nph.15225. Epub 2018 Jun 1.
Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them.
植物通过改变生物量分配、形态、生理和结构的多个方面来应对资源胁迫。迄今为止,我们缺乏对这些塑性响应在缓解资源胁迫中的相对重要性的综合认识,也缺乏对这些响应在物种间的一致性/可变性的认识。我们将 9 个物种(豆科、草本植物和禾本科植物)置于氮和/或光照不足的条件下,并测量了 11 个对缓解这些胁迫至关重要的地上和地下特征调整(加上几个潜在特征)。在 11 个特征中有 9 个表现出了调整,提高了植物在给定时间内获取限制资源的潜在能力。在地上部分,分配、形态、生理和结构方面的可塑性似乎都对提高光捕获很重要,而在地下部分,分配和生理方面的可塑性对提高氮吸收最为关键。在 11 个特征中有 6 个表现出了物种可塑性的实质性差异,这些差异在特征协变综合征内几乎没有结构。这种对植物对多种胁迫因素的表型响应的复杂性质的综合评估,以及对多个物种的植物响应的比较,清楚地表明了植物潜在的可塑性响应具有高度(但在很大程度上被忽视)的多样性,需要探索它们的潜在结构规则。