Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
Department of Ecology and Genetics, Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
Ecology. 2018 Jun;99(6):1463-1472. doi: 10.1002/ecy.2347.
The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly -1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 10 . Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95% CIs excluding -1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 10 . Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates.
生物的密度随着体型的增大而降低,因为较大的生物体需要比较小的生物体更多的能量,并且较大的生物体在捕食较小的生物体时会发生能量损失。生物体密度-体型分布的一种潜在表现形式是归一化生物量大小谱(NBSS),它在对数生物体大小的bins 中绘制独立于分类的生物量对数,除以 bin 宽度。如果营养转移效率(TTE,相邻营养级之间的生产力比率)为 10%,并且捕食者-猎物质量比(PPMR)固定为 10,则多营养级群落的 NBSS 斜率理论上正好为-1.0。在这里,我们从四个多营养级湖泊食物网提供证据表明,经验估计的 TTE 与各自社区 NBSS 的经验估计斜率相对应。考虑的 NBSS 涵盖了从细菌到鱼类的浮游生物和底栖生物,所有生物都在 1 年内的三个季节进行了采样。四个 NBSS 的斜率都明显大于-1.0(范围从-1.14 到-1.19,95%置信区间排除-1)。在这四个食物网中,每个食物网的相应平均 TTE 都远低于 10%(范围为 1.0%至 3.6%,平均值为 1.85%)。从四个系统合并的所有生物量-体型数据对的总体斜率(-1.17)几乎与四个食物网的算术平均 TTE 预测的斜率(-1.18)相同,假设 PPMR 为 10 时保持不变。因此,我们的经验数据证实了 TTE 和生物量-体型分布斜率之间理论预测的定量关系。此外,我们表明,底栖生物和浮游生物可以合并为一个群落 NBSS,但未来的研究仍需要探索特定栖息地 TTE 和 PPMR 的潜在差异。我们建议,群落 NBSS 可以为食物网的结构及其能量途径提供有价值的信息,并可以提高 TTE 估计的准确性。