Graduate Institute of Electro-Optical Engineering and Department of Electronic and Computer Engineering, National (Taiwan) University of Science and Technology, Taipei, 106, Taiwan, Republic of China.
Chemistry. 2018 Aug 27;24(48):12574-12583. doi: 10.1002/chem.201800702. Epub 2018 Jul 19.
High performance UV/Visible photodetectors are successfully fabricated from ZnO/fibroin protein-carbon nanotube (ZFP ) composites using a simple hydrothermal method. The as-fabricated ZnO nanorods (ZnO NRs) and ZFP nanostructures were measured under different light illuminations. The measurements showed the UV-light photoresponse of the as-fabricated ZFP nanostructures (55,555) to be approximately 26454 % higher than that of the as-prepared ZnO NRs (210). This photodetector can sense photons with energies considerably smaller (2.75 eV) than the band gap of ZnO (3.22 eV). It was observed that the finest distribution of fibroin and CNT into 1D ZnO resulted in rapid electron transportation and hole recombination via carbon/nitrogen dopants from the ZFP . Carbon dopants create new energy levels on the conduction band of the ZFP , which reduces the barrier height to allow for charge carrier transportation under light illumination. Moreover, the nitrogen dopants increase the adsorptivity and amount of oxygen vacancies in the ZFP so that it exhibits fast response/recovery times both in the dark and under light illumination. The selectivity of UV light among the other types of illumination can be ascribed to the deep-level energy traps (E ) of the ZFP . These significant features of ZFP lead to the excellent optical properties and creation of new pathways for the production of low-cost semiconductors and bio-waste protein based UV/Visible photodetectors.
使用简单的水热法,成功地从 ZnO/丝素蛋白-碳纳米管 (ZFP) 复合材料中制备出高性能的紫外/可见光电探测器。在不同的光照射下,对所制备的 ZnO 纳米棒 (ZnO NRs) 和 ZFP 纳米结构进行了测量。测量结果表明,所制备的 ZFP 纳米结构(55555)对紫外光的光响应约比所制备的 ZnO NRs(210)高 26454%。这种光电探测器可以检测到能量明显小于 ZnO 带隙(3.22 eV)的光子(2.75 eV)。观察到丝素和 CNT 最细地分布在 1D ZnO 中,通过 ZFP 中的碳/氮掺杂剂,导致电子快速传输和空穴复合。碳掺杂剂在 ZFP 的导带中形成新的能级,降低了势垒高度,从而允许在光照射下进行电荷载流子传输。此外,氮掺杂剂增加了 ZFP 中的吸附性和氧空位的数量,使其在黑暗和光照下都具有快速的响应/恢复时间。ZFP 对其他类型光照的紫外光选择性可以归因于 ZFP 的深能级陷阱 (E)。ZFP 的这些显著特征导致了出色的光学性能,并为生产低成本半导体和基于生物废弃物蛋白的紫外/可见光电探测器开辟了新途径。