School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.
Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea.
J Theor Biol. 2018 Oct 7;454:41-52. doi: 10.1016/j.jtbi.2018.05.030. Epub 2018 May 29.
The use of viruses as a cancer treatment is becoming increasingly more robust; however, there is still a long way to go before a completely successful treatment is formulated. One major challenge in the field is to select which virus, out of a burgeoning number of oncolytic viruses and engineered derivatives, can maximise both treatment spread and anticancer cytotoxicity. To assist in solving this problem, an in-depth understanding of the virus-tumour interaction is crucial. In this article, we present a novel integro-differential system with distributed delays embodying the dynamics of an oncolytic adenovirus with a fixed population of tumour cells in vitro, allowing for heterogeneity to exist in the virus and cell populations. The parameters of the model are optimised in a hierarchical manner, the purpose of which is not to obtain a perfect representation of the data. Instead, we place our parameter values in the correct region of the parameter space. Due to the sparse nature of the data it is not possible to obtain the parameter values with any certainty, but rather we demonstrate the suitability of the model. Using our model we quantify how modifications to the viral genome alter the viral characteristics, specifically how the attenuation of the E1B 19 and E1B 55 gene affect the system performance, and identify the dominant processes altered by the mutations. From our analysis, we conclude that the deletion of the E1B 55 gene significantly reduces the replication rate of the virus in comparison to the deletion of the E1B 19 gene. We also found that the deletion of both the E1B 19 and E1B 55 genes resulted in a long delay in the average replication start time of the virus. This leads us to propose the use of E1B 19 gene-attenuated adenovirus for cancer therapy, as opposed to E1B 55 gene-attenuated adenoviruses.
病毒作为癌症治疗手段的应用正变得越来越强大;然而,在制定完全成功的治疗方案之前,还有很长的路要走。该领域的一个主要挑战是选择哪种病毒,在不断涌现的溶瘤病毒和工程衍生病毒中,能够最大限度地提高治疗效果和抗癌细胞毒性。为了协助解决这个问题,深入了解病毒-肿瘤相互作用至关重要。在本文中,我们提出了一个新的积分微分系统,该系统具有分布式时滞,体现了在体外固定肿瘤细胞群体中具有固定种群的溶瘤腺病毒的动力学,允许病毒和细胞群体存在异质性。模型的参数以分层的方式进行优化,其目的不是获得对数据的完美表示。相反,我们将参数值置于参数空间的正确区域中。由于数据的稀疏性,不可能确定参数值,但我们展示了模型的适用性。使用我们的模型,我们量化了病毒基因组的修改如何改变病毒特性,特别是 E1B 19 和 E1B 55 基因的衰减如何影响系统性能,并确定突变改变的主要过程。从我们的分析中,我们得出结论,与删除 E1B 19 基因相比,删除 E1B 55 基因会显著降低病毒的复制率。我们还发现,删除 E1B 19 和 E1B 55 基因都会导致病毒的平均复制起始时间延迟很长时间。这使我们提出使用 E1B 19 基因衰减腺病毒进行癌症治疗,而不是 E1B 55 基因衰减腺病毒。