Suppr超能文献

在模板辅助预测蛋白质结构和服务器模型优化中使用 UNRES 力场:对 CASP12 目标的测试。

Use of the UNRES force field in template-assisted prediction of protein structures and the refinement of server models: Test with CASP12 targets.

机构信息

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland; Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, Warszawa, PL-02668, Poland.

出版信息

J Mol Graph Model. 2018 Aug;83:92-99. doi: 10.1016/j.jmgm.2018.05.008. Epub 2018 May 24.

Abstract

Knowledge-based methods are, at present, the most effective ones for the prediction of protein structures; however, their results heavily depend on the similarity of a target sequence to those of proteins with known structures. On the other hand, the physics-based methods, although still less accurate and more expensive to execute, are independent of databases and give reasonable results where the knowledge-based methods fail because of weak sequence similarity. Therefore, a plausible approach seems to be the use of knowledge-based methods to determine the sections of the structures that correspond to sufficient sequence similarity and physics-based methods to determine the remaining structure. By participating in the 12th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP12) as the KIAS-Gdansk group, we tested our recently developed hybrid approach, in which protein-structure prediction is carried out by using the physics-based UNRES coarse-grained energy function, with restraints derived from the server models. Best predictions among all groups were obtained for 2 targets and 80% of our models were in the upper 50% of the models submitted to CASP. Our method was also able to exclude, with about 70% confidence, the information from the servers that performed poorly on a given target. Moreover, the method resulted in the best models of 2 refinement targets and performed remarkably well on oligomeric targets.

摘要

基于知识的方法是目前预测蛋白质结构最有效的方法;然而,它们的结果在很大程度上取决于目标序列与具有已知结构的蛋白质序列的相似性。另一方面,基于物理的方法虽然仍然不够准确,执行起来也更昂贵,但它不依赖于数据库,并且在基于知识的方法由于序列相似性较弱而失败的情况下给出合理的结果。因此,一种可行的方法似乎是使用基于知识的方法来确定与足够序列相似性对应的结构部分,以及使用基于物理的方法来确定剩余的结构。我们作为 KIAS-Gdansk 小组参加了第 12 届蛋白质结构预测技术关键评估(CASP12)的社区范围实验,测试了我们最近开发的混合方法,其中蛋白质结构预测是通过使用基于物理的 UNRES 粗粒度能量函数来进行的,并且使用来自服务器模型的约束条件。在所有小组中,我们对 2 个目标的最佳预测获得了最佳排名,并且我们的 80%的模型都在提交给 CASP 的模型的前 50%中。我们的方法还能够以约 70%的置信度排除在给定目标上表现不佳的服务器的信息。此外,该方法产生了 2 个精修目标的最佳模型,并且在寡聚目标上表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验