Suppr超能文献

精神分裂症患者皮质应激调节紊乱,但精神病高危临床患者无此现象。

Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis.

机构信息

Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Brain. 2018 Jul 1;141(7):2213-2224. doi: 10.1093/brain/awy133.

Abstract

While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.

摘要

虽然精神分裂症和应激状态下纹状体多巴胺的改变已经得到了很好的研究,但前额叶皮层中的多巴胺作用仍知之甚少。迄今为止,尚无研究调查精神分裂症谱系中前额叶皮层对应激的多巴胺反应,尽管背外侧和内侧前额叶皮层分别是认知和情绪调节的关键区域。本研究使用高亲和力多巴胺 D2/3 受体放射性示踪剂 11C-FLB457 和 PET 以及经过验证的心理社会应激挑战,来研究精神分裂症和临床高风险精神疾病患者的前额叶背外侧和内侧皮层对应激的多巴胺反应。40 名参与者完成了两次 11C-FLB457 PET 扫描(14 名未服用抗精神病药物的精神分裂症患者、14 名临床高风险精神疾病患者和 12 名匹配的健康志愿者),一次是在进行感觉运动控制任务(对照)时,另一次是在进行蒙特利尔成像应激任务(应激)时。使用简化的参考组织模型(以小脑皮层为参考区)估计结合蛋白(BPND)。使用一种新的注射质量校正方法,将对照和应激扫描之间的 BPND 变化定义为多巴胺释放(ΔBPND)。在整个任务过程中评估唾液皮质醇反应(ΔAUCI),并检查其与多巴胺释放的关系。在控制条件下,11C-FLB457 的结合在背外侧[F(2,37) = 7.98,P = 0.0013]和内侧[F(2,37) = 6.97,P = 0.0027]前额叶皮层在组间存在显著差异,精神分裂症患者的 BPND 低于临床高风险精神疾病患者和健康志愿者,而组间的ΔBPND 没有差异[背外侧前额叶皮层:F(2,37) = 1.07,P = 0.35;内侧前额叶皮层:F(2,37) = 0.54,P = 0.59]。我们报告了健康志愿者(r = 0.72,P = 0.026;r = 0.76,P = 0.014)和临床高风险精神疾病患者(r = 0.76,P = 0.0075;r = 0.72,P = 0.018)中背外侧和内侧前额叶皮层中ΔAUCI 和 11C-FLB457ΔBPND 之间的正相关关系,而在精神分裂症患者中(r = 0.46,P = 1.00;r = 0.19,P = 1.00)不存在。此外,在临床高风险精神疾病患者中观察到的ΔBPND 或ΔAUCI 与应激或焦虑测量之间的探索性关联在精神分裂症患者中不存在。这些发现提供了前额叶皮层多巴胺应激调节失调的直接证据。

相似文献

4
Prefrontal cortical dopamine release in clinical high risk for psychosis during a cognitive task: a [C]FLB457 positron emission tomography study.
Eur Neuropsychopharmacol. 2019 Sep;29(9):1023-1032. doi: 10.1016/j.euroneuro.2019.06.004. Epub 2019 Jul 24.
6
Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia.
Biol Psychiatry. 2022 Nov 15;92(10):791-799. doi: 10.1016/j.biopsych.2022.05.009. Epub 2022 May 14.
8
Sex differences in amphetamine-induced dopamine release in the dorsolateral prefrontal cortex of tobacco smokers.
Neuropsychopharmacology. 2019 Dec;44(13):2205-2211. doi: 10.1038/s41386-019-0456-y. Epub 2019 Jul 3.
9
Amphetamine-Induced Striatal Dopamine Release Measured With an Agonist Radiotracer in Schizophrenia.
Biol Psychiatry. 2018 Apr 15;83(8):707-714. doi: 10.1016/j.biopsych.2017.11.032. Epub 2017 Dec 7.

引用本文的文献

3
Noncanonical EEG-BOLD coupling by default and in schizophrenia.
medRxiv. 2025 Jan 15:2025.01.14.25320216. doi: 10.1101/2025.01.14.25320216.
4
Ultrastructural disturbances in microglia-neuron interactions in the head of the caudate nucleus in schizophrenia.
Eur Arch Psychiatry Clin Neurosci. 2025 Apr;275(3):823-838. doi: 10.1007/s00406-024-01956-z. Epub 2024 Dec 28.
7
Candidate biomarkers in psychiatric disorders: state of the field.
World Psychiatry. 2023 Jun;22(2):236-262. doi: 10.1002/wps.21078.
8
Higher stress response and altered quality of life in schizophrenia patients with low membrane levels of docosahexaenoic acid.
Front Psychiatry. 2023 Feb 3;14:1089724. doi: 10.3389/fpsyt.2023.1089724. eCollection 2023.
9
Effect of Intranasal Oxytocin on Resting-state Effective Connectivity in Schizophrenia.
Schizophr Bull. 2022 Sep 1;48(5):1115-1124. doi: 10.1093/schbul/sbac066.

本文引用的文献

1
Nigral Stress-Induced Dopamine Release in Clinical High Risk and Antipsychotic-Naïve Schizophrenia.
Schizophr Bull. 2018 Apr 6;44(3):542-551. doi: 10.1093/schbul/sbx042.
3
Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model.
Neurosci Biobehav Rev. 2016 Nov;70:260-270. doi: 10.1016/j.neubiorev.2016.05.030. Epub 2016 May 24.
4
Determination of receptor occupancy in the presence of mass dose: [C]GSK189254 PET imaging of histamine H receptor occupancy by PF-03654746.
J Cereb Blood Flow Metab. 2017 Mar;37(3):1095-1107. doi: 10.1177/0271678X16650697. Epub 2016 Jul 20.
5
Pathway-Specific Dopamine Abnormalities in Schizophrenia.
Biol Psychiatry. 2017 Jan 1;81(1):31-42. doi: 10.1016/j.biopsych.2016.03.2104. Epub 2016 Mar 31.
6
Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex.
Neuropsychopharmacology. 2016 Jan;41(1):3-23. doi: 10.1038/npp.2015.171. Epub 2015 Jun 16.
7
No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder.
Transl Psychiatry. 2015 Apr 14;5(4):e547. doi: 10.1038/tp.2015.37.
8
Regulation of dopamine system responsivity and its adaptive and pathological response to stress.
Proc Biol Sci. 2015 Apr 22;282(1805). doi: 10.1098/rspb.2014.2516.
10
Reference region modeling approaches for amphetamine challenge studies with [11C]FLB 457 and PET.
J Cereb Blood Flow Metab. 2015 Mar 31;35(4):623-9. doi: 10.1038/jcbfm.2014.237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验