Suppr超能文献

SV-plaudit:一个基于云的框架,用于手动整理数千个结构变体。

SV-plaudit: A cloud-based framework for manually curating thousands of structural variants.

机构信息

Department of Human Genetics, University of Utah, 15 S 2030 E, Salt Lake City, UT, USA.

USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA.

出版信息

Gigascience. 2018 Jul 1;7(7). doi: 10.1093/gigascience/giy064.

Abstract

SV-plaudit is a framework for rapidly curating structural variant (SV) predictions. For each SV, we generate an image that visualizes the coverage and alignment signals from a set of samples. Images are uploaded to our cloud framework where users assess the quality of each image using a client-side web application. Reports can then be generated as a tab-delimited file or annotated Variant Call Format (VCF) file. As a proof of principle, nine researchers collaborated for 1 hour to evaluate 1,350 SVs each. We anticipate that SV-plaudit will become a standard step in variant calling pipelines and the crowd-sourced curation of other biological results.Code available at https://github.com/jbelyeu/SV-plauditDemonstration video available at https://www.youtube.com/watch?v=ono8kHMKxDs.

摘要

SV-plaudit 是一个快速整理结构变异 (SV) 预测的框架。对于每个 SV,我们生成一个图像,可视化一组样本的覆盖和对齐信号。图像上传到我们的云框架,用户使用客户端 Web 应用程序评估每张图像的质量。然后可以生成制表符分隔文件或注释变异调用格式 (VCF) 文件的报告。作为原理验证,九位研究人员合作了 1 小时,每人评估了 1350 个 SV。我们预计 SV-plaudit 将成为变异调用管道和其他生物结果众包整理的标准步骤。代码可在 https://github.com/jbelyeu/SV-plaudit 获得,演示视频可在 https://www.youtube.com/watch?v=ono8kHMKxDs 观看。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac85/6030999/2004c8773a01/giy064fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验