School of Electrical Engineering, Korea University, Seoul 02841, Korea.
Sensors (Basel). 2018 May 26;18(6):1722. doi: 10.3390/s18061722.
The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.
可靠且准确的室内行人定位是基于位置的系统和应用的最大挑战之一。大多数行人定位系统由于低成本惯性传感器和人体的随机运动以及用于位置确定的不可预测和时变射频 (RF) 信号,具有漂移误差和较大偏差。为了解决这个问题,最近提出了许多将用户通过推测法(DR)方法估计的运动和通过 RSS 指纹识别获得的位置数据通过贝叶斯滤波器(例如卡尔曼滤波器(KF)、无迹卡尔曼滤波器(UKF)和粒子滤波器(PF))集成的室内定位方法,以在室内环境中实现更高的定位精度。在贝叶斯滤波方法中,PF 是最流行的集成方法,可以提供最佳的定位性能。然而,由于 PF 使用大量粒子来实现高性能,因此可能会导致相当大的计算成本。本文提出了一种在智能手机上实现的室内定位系统,该系统使用简单的推测法(DR)、使用 iBeacon 的 RSS 指纹识别和机器学习方案以及改进的 KF。系统的核心是称为 Sigma 点卡尔曼粒子滤波器(SKPF)的增强 KF,它利用 UKF 的无迹变换和 PF 的加权方法来定位用户。本研究提出的 SKPF 算法用于通过融合来自 DR 和指纹识别的位置数据并考虑不确定性来提供增强的定位精度。SKPF 算法可以实现比 KF 和 UKF 更好的定位精度,与 PF 相比具有相当的性能,并且与 PF 相比可以提供更高的计算效率。我们的定位系统中的 iBeacon 用于节能定位和 RSS 指纹识别。我们旨在通过在室内使用 SKPF 和 iBeacon 设计能够实现高精度、计算效率和能源效率的定位方案。实际环境中的经验实验表明,在我们的室内定位方案中使用 SKPF 算法和 iBeacon 可以在定位精度、计算成本和能源效率方面实现非常令人满意的性能。