Gray A, Tsybizova A, Roithova J
Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 2030/8 , 12843 Prague 2 , Czech Republic . Email:
Chem Sci. 2015 Oct 1;6(10):5544-5553. doi: 10.1039/c5sc01729g. Epub 2015 Jul 1.
The C-H activation of 2-phenylpyridine, catalyzed by copper(ii), palladium(ii) and ruthenium(ii) carboxylates, was studied in the gas phase. ESI-MS, infrared multiphoton dissociation spectroscopy and quantum chemical calculations were combined to investigate the intermediate species in the reaction. Collision induced dissociation (CID) experiments and DFT calculations allowed estimation of the energy required for this C-H activation step and the subsequent acetic acid loss. Hammett plots constructed from the CID experiments using different copper carboxylates as catalysts revealed that the use of stronger acids accelerates the C-H activation step. The reasoning can be traced from the associated transition structures that suggest a concerted mechanism and the key effect of the carbon-metal bond pre-formation. Carboxylates derived from stronger acids make the metal atom more electrophilic and therefore shift the reaction towards the formation of C-H activated products.
在气相中研究了由铜(II)、钯(II)和钌(II)羧酸盐催化的2-苯基吡啶的C-H活化反应。结合电喷雾质谱(ESI-MS)、红外多光子解离光谱和量子化学计算来研究反应中的中间体。碰撞诱导解离(CID)实验和密度泛函理论(DFT)计算能够估算该C-H活化步骤以及随后乙酸损失所需的能量。使用不同的羧酸铜作为催化剂,通过CID实验构建的哈米特图表明,使用更强的酸会加速C-H活化步骤。其推理可以从相关的过渡结构中找到,这些过渡结构表明了协同机理以及碳-金属键预形成的关键作用。由更强的酸衍生而来的羧酸盐使金属原子更具亲电性,因此使反应朝着形成C-H活化产物的方向进行。