Suppr超能文献

新霉素-双苯并咪唑缀合物对miR-27a的强效抑制作用。

Potent inhibition of miR-27a by neomycin-bisbenzimidazole conjugates.

作者信息

Nahar Smita, Ranjan Nihar, Ray Arjun, Arya Dev P, Maiti Souvik

机构信息

Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India.

CSIR-Institute of Genomics and Integrative Biology , Mathura Road , Delhi-110020 , India . Email:

出版信息

Chem Sci. 2015 Oct 1;6(10):5837-5846. doi: 10.1039/c5sc01969a. Epub 2015 Jul 9.

Abstract

miRNAs are important components of regulatory networks that control gene expression and have implications in various diseases including cancer. Targeting oncogenic miRNAs with small molecules is currently being explored to develop cancer therapeutics. Here, we report the development of dual binding neomycin-bisbenzimidazole conjugates that target oncogenic miR-27a with high affinity ( = 1.2 to 7.4 × 10 M). These conjugates bring significant reduction (∼65% at 5 μM) in mature miRNA levels and penetrate easily in the cells where they localise both in the cytoplasm and the nucleus. Cell cycle analysis showed significant increase in the G0/G1 phase (∼15%) and decrease in the S phase (∼7%) upon treatment with neomycin-bisbenzimidazole conjugates, suggesting inhibition of cell proliferation. Using the conjugation approach, we show that moderately binding ligands can be covalently combined into high affinity binders. This study also highlights the role of linker optimization in designing high affinity ligands for miR-27a targeting.

摘要

微小RNA(miRNAs)是调控基因表达的网络中的重要组成部分,并且在包括癌症在内的各种疾病中都有影响。目前正在探索用小分子靶向致癌性miRNAs以开发癌症治疗方法。在此,我们报告了双结合新霉素-双苯并咪唑缀合物的开发,其以高亲和力(Kd = 1.2至7.4×10⁻⁸ M)靶向致癌性miR-27a。这些缀合物使成熟miRNA水平显著降低(5μM时约65%),并且能够轻松穿透细胞,在细胞的细胞质和细胞核中均有定位。细胞周期分析显示,用新霉素-双苯并咪唑缀合物处理后,G0/G1期显著增加(约15%),S期减少(约7%),表明细胞增殖受到抑制。通过共轭方法,我们表明中等结合亲和力的配体可以共价结合成高亲和力结合剂。这项研究还强调了连接子优化在设计靶向miR-27a的高亲和力配体中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bd/5947510/70e3ec87dd77/c5sc01969a-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验