Lummiss Justin A M, Higman Carolyn S, Fyson Devon L, McDonald Robert, Fogg Deryn E
Center for Catalysis Research & Innovation and Department of Chemistry , University of Ottawa , Ottawa , K1N 6N5 , Canada . Email:
Department of Chemistry , University of Alberta , Edmonton , T6G 2G2 , AB , Canada.
Chem Sci. 2015 Dec 1;6(12):6739-6746. doi: 10.1039/c5sc02592c. Epub 2015 Oct 6.
Strong σ-donation from NHC ligands (NHC = N-heterocyclic carbene) is shown to have profoundly conflicting consequences for the reactivity of transition-metal catalysts. Such donation is regarded as central to high catalyst activity in many contexts, of which the second-generation Grubbs metathesis catalysts (RuCl(NHC)(PCy)([double bond, length as m-dash]CHPh), ) offer an early, prominent example. Less widely recognized is the dramatically inhibiting impact of NHC ligation on initiation of , and on re-entry into the catalytic cycle from the resting-state methylidene species RuCl(NHC)(PCy)([double bond, length as m-dash]CH), . Both and the methylidene complexes are activated by dissociation of PCy. The impact of NHC donicity on the rate of PCy loss is explored in a comparison of , , in which the NHC ligand is saturated HIMes or unsaturated IMes, respectively. PCy loss is nearly an order of magnitude slower for the IMes derivative (a difference that is replicated, albeit smaller, for the benzylidene precatalysts ). Proposed as an overlooked contributor to these rate differences is an increase in the Ru-PCy bond strength arising from π-back-donation onto the phosphine ligand. Strong σ-donation from the IMes ligand, coupled with the inability of this unsaturated NHC to participate in significant π-backbonding, amplifies Ru → PCy π-back-donation. The resulting increase in Ru-P bond strength greatly inhibits entry into the active cycle. For , in contrast, the greater π-acceptor capacity of the NHC ligand enables competing Ru → HIMes back-donation (as confirmed by NOE experiments, which reveal restricted rotation about the Ru-NHC bond for HIMes, but not IMes). Ru → PCy back-donation is thus attenuated in the HIMes complexes, accounting for the greater lability of the PCy ligand in and . Similarly inhibited initiation is predicted for other metal-NHC catalysts in which a π-acceptor ligand L must be dissociated to permit substrate binding. Conversely, enhanced reactivity can be expected where such L ligands are pure σ-donors. These effects are expected to be particularly dramatic where the NHC ligand has minimal π-acceptor capacity (as in the unsaturated Arduengo carbenes), and in geometries that maximize NHC-M-L orbital interactions.
研究表明,N-杂环卡宾配体(NHC)强烈的σ供电子作用对过渡金属催化剂的反应活性有着极为矛盾的影响。在许多情况下,这种供电子作用被认为是高催化剂活性的关键,其中第二代格拉布催化剂(RuCl(NHC)(PCy)(=CHPh))就是一个早期的突出例子。NHC配位对[某种反应]引发以及从静止态亚甲基物种RuCl(NHC)(PCy)(=CH)重新进入催化循环的显著抑制作用却较少被广泛认识。[某种物质]和亚甲基配合物都通过PCy的解离而被活化。通过比较[两种物质](其中NHC配体分别为饱和的HIMes或不饱和的IMes),研究了NHC给电子能力对PCy损失速率的影响。对于IMes衍生物,PCy损失的速度慢了近一个数量级(对于亚苄基预催化剂,虽然差异较小,但也存在类似情况)。有人提出,这些速率差异的一个被忽视的因素是由于π反馈给电子作用到膦配体上导致Ru-PCy键强度增加。IMes配体强烈的σ供电子作用,加上这种不饱和NHC无法参与显著的π反馈键合,增强了Ru→PCy的π反馈给电子作用。由此导致的Ru-P键强度增加极大地抑制了进入活性循环。相比之下,对于[另一种物质],NHC配体更大的π接受能力使得能够发生竞争性的Ru→HIMes反馈给电子作用(NOE实验证实了这一点,该实验表明HIMes的Ru-NHC键旋转受限,而IMes则不然)。因此,在HIMes配合物中Ru→PCy的反馈给电子作用减弱,这就解释了[某种物质]中PCy配体更大的活性。对于其他金属-NHC催化剂,如果必须解离一个π接受配体L以允许底物结合,则预计其引发也会受到类似抑制。相反,在这种L配体是纯σ供体的情况下,可以预期反应活性会增强。在NHC配体的π接受能力最小的情况下(如在不饱和的阿杜恩戈卡宾中),以及在使NHC-M-L轨道相互作用最大化的几何结构中,预计这些影响会特别显著。