State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
Analyst. 2018 Jun 11;143(12):2799-2806. doi: 10.1039/c8an00609a.
The sensitive and specific determination of nucleic acids is very important in clinical diagnosis and biological studies. In this work, an ultrasensitive photoelectrochemical (PEC) biosensor has been developed for DNA detection based on a "signal-on" sensing strategy and a three-stage cascade signal amplification method (catalytic hairpin assembly (CHA), hybridization chain reaction (HCR) and alkaline phosphatase (ALP)-triggered in situ generation of ascorbic acid (AA)). Here, CHA hairpin 1 (CHA-HP1) is opened by the target DNA (T-DNA) owing to the hybridization between T-DNA and CHA-HP1, and then the opened CHA-HP1 hybridizes with CHA hairpin 2 (CHA-HP2) to displace the T-DNA, generating a CHA-HP1/CHA-HP2 complex. The displaced T-DNA triggers the next cycle of CHA, resulting in the generation of numerous CHA-HP1/CHA-HP2 complexes. Subsequently, one end of the CHA-HP1/CHA-HP2 complex hybridizes with the capture DNA immobilized on the indium tin oxide/TiO2/CdS : Mn electrode. After the introduction of dual-biotin labeled HCR hairpin 1 (HCR-HP1-Bio) and dual-biotin labeled HCR hairpin 2 (HCR-HP2-Bio), the other end of the CHA-HP1/CHA-HP2 complex opens HCR-HP1-Bio. The opened HCR-HP1-Bio triggers the HCR reaction between HCR-HP1-Bio and HCR-HP2-Bio, leading to the formation of long nicked duplex DNA structures. The dual-biotin modified HCR-hairpins can anchor more streptavidin-ALP to catalyze 2-phospho-l-ascorbic acid trisodium salt to yield more AA, leading to a larger PEC response. The proposed PEC biosensor shows superior analytical performance for T-DNA detection with a linear response ranging from 0.1 fM to 100 pM and a detection limit of 0.052 fM, and may provide a powerful biosensing platform for bioanalysis and early disease diagnosis.
核酸的灵敏和特异性测定在临床诊断和生物研究中非常重要。在这项工作中,基于“信号开启”传感策略和三阶段级联信号放大方法(催化发夹组装(CHA)、杂交链式反应(HCR)和碱性磷酸酶(ALP)触发的原位生成抗坏血酸(AA)),开发了一种用于 DNA 检测的超灵敏光电化学(PEC)生物传感器。在这里,靶 DNA(T-DNA)使 CHA 发夹 1(CHA-HP1)打开,由于 T-DNA 与 CHA-HP1 的杂交,然后打开的 CHA-HP1 与 CHA 发夹 2(CHA-HP2)杂交,置换 T-DNA,生成 CHA-HP1/CHA-HP2 复合物。置换的 T-DNA 触发 CHA 的下一个循环,导致大量 CHA-HP1/CHA-HP2 复合物的产生。随后,CHA-HP1/CHA-HP2 复合物的一端与固定在氧化铟锡/二氧化钛/硫化镉:锰电极上的捕获 DNA 杂交。在引入双生物素标记的 HCR 发夹 1(HCR-HP1-Bio)和双生物素标记的 HCR 发夹 2(HCR-HP2-Bio)后,CHA-HP1/CHA-HP2 复合物的另一端打开 HCR-HP1-Bio。打开的 HCR-HP1-Bio 触发 HCR-HP1-Bio 和 HCR-HP2-Bio 之间的 HCR 反应,导致长切口双链 DNA 结构的形成。双生物素修饰的 HCR-发夹可以锚定更多的链霉亲和素-ALP 来催化 2-磷酸-l-抗坏血酸钠盐生成更多的 AA,导致更大的 PEC 响应。所提出的 PEC 生物传感器对 T-DNA 检测具有优异的分析性能,线性响应范围为 0.1 fM 至 100 pM,检测限为 0.052 fM,可为生物分析和早期疾病诊断提供强大的生物传感平台。