Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
Phys Chem Chem Phys. 2018 Aug 1;20(30):19768-19775. doi: 10.1039/c8cp01798k.
Producing self-assembled inorganic precipitate micro- and macro-structures with tailored properties may pave the way for new possibilities in, e.g., materials science and the pharmaceutical industry. One set of important parameters to maintain appropriate control over the yield falls in the frame of reaction kinetics, which affects the possible coupling between hydrodynamics and chemical reactions under flow conditions. In this study, we present a spectrophotometric method to experimentally determine the characteristic timescales of precipitation reactions. It is also shown that the nickel-oxalate model system - despite the fast chemical complexation equilibria taking place - can be kinetically described by either Classical Nucleation Theory or the classical homogeneous kinetics approach. The applicability of our results is illustrated via injection experiments intrinsically exhibiting coupling between chemistry and hydrodynamics. Therefore, we suggest that easy-to-handle power law functions may be applied to characterize the precipitation kinetics in flow systems.
用定制特性的自组装无机沉淀微结构和宏观结构可能为例如材料科学和制药行业开辟新的可能性。在反应动力学范围内,一组重要的参数可以维持对产率的适当控制,这会影响在流动条件下流体力学和化学反应之间可能的耦合。在这项研究中,我们提出了一种分光光度法来实验确定沉淀反应的特征时间尺度。还表明,尽管镍-草酸盐模型体系中存在快速的化学配位平衡,但可以通过经典成核理论或经典均相动力学方法来进行动力学描述。通过本质上表现出化学和流体力学之间耦合的注射实验说明了我们结果的适用性。因此,我们建议可以应用易于处理的幂律函数来表征流动系统中的沉淀动力学。