Suppr超能文献

配合物网络中的动力学产物:从头算 X 射线粉末衍射分析。

Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

机构信息

Italian Institute of Technology, Centre for Nano Science and Technology (CNST-IIT@PoliMi), Via Pascoli 70/3, 20133 Milan, Italy.

出版信息

Acc Chem Res. 2013 Feb 19;46(2):493-505. doi: 10.1021/ar300212v. Epub 2012 Dec 19.

Abstract

Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

摘要

多孔配位网络是一种在分子“客体”进出其孔时保持其晶体结构的材料。它们具有很大的研究兴趣,可应用于催化、气体吸附、质子传导和药物释放等领域。与沸石的制备一样,配位网络制备中的动力学状态在决定最终产物方面起着至关重要的作用。控制配位网络自组装过程中的动力学状态是进一步功能化这类材料的基础。然而,与沸石不同的是,很少有结构研究报告配位网络自组装过程中的动力学产物。产生所需选择性的合成途径很复杂。从 X 射线晶体学获得的结构知识对于开发有机-无机杂化网络的合理设计策略至关重要。然而,尽管在过去 15 年中配位网络的固态研究取得了爆炸性的进展,但由于难以生长适合 X 射线衍射的单晶,研究人员仍然不了解许多化学反应过程:快速沉淀会导致动力学(亚稳)产物,但以微晶形式存在,不适合单晶 X 射线分析。X 射线粉末衍射(XRPD)通常用于检查相纯度、结晶度,并在各种条件下监测框架在客体去除/包含时的稳定性,但很少用于结构解析。最近在无定形微晶固体的结构测定方面的进展允许在没有单晶时进行三维结构测定。因此,从头算 XRPD 结构测定正在成为包括多孔配位网络在内的微晶体固体结构测定的有力方法。由于在科学学科中对配位网络,特别是多孔配位网络的极大兴趣,当晶体不适合单晶 X 射线分析时确定晶体结构的能力至关重要。在本报告中,我们报告了动力学控制在合成新的配位网络方面的潜力,并描述了从头算 XRPD 结构测定来表征这些网络的晶体结构。我们描述了我们最近在选择性即时合成方面的工作,以产生动力学控制的多孔配位网络。我们证明,即时合成可以选择性地产生不可能通过传统溶液化学合成的亚稳网络。使用动力学产物,我们提供了对多孔配位网络中热诱导(573-723 K)(即退火方法)结构转变以及客体交换/包含反应的机制见解。最后,我们描述了一种记忆效应,该效应允许通过无定形中间相将结构信息从动力学前体结构传递到热稳定结构。我们相信,从头算 XRPD 结构测定很快将用于研究本质上导致微晶固体的化学过程,由于缺乏单晶,这些过程迄今为止尚未得到充分理解。例如,直到最近,研究人员才使用单晶 X 射线衍射来阐明配位网络晶架内发生的晶-晶化学反应。从头算 X 射线粉末衍射分析的潜力超出了单晶到单晶过程,有可能使该领域的成员能够研究有趣的原位反应,例如在孔内的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验