Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain.
Phys Chem Chem Phys. 2018 Jun 13;20(23):16231-16237. doi: 10.1039/c8cp02485e.
Orbital invariant position space techniques are used to show a theoretical link between the conventional concept of bond order and the energetics of chemical interactions. Taking advantage of the parallelism between the covalent and ionic interaction energies in the interacting quantum atoms (IQA) approach, a real space ionic bond order is defined. Expanding the covalent and ionic interaction energies as a multipolar series we show that the zeroth order terms in the expansion, those dominating the total interaction, are nothing but distance-scaled bond orders. A chemically intuitive picture emerges in which bonding is brought about by the Coulomb attraction of permanently transferred electrons, that give rise to ionic terms, and of the Coulombic attraction of half the shared pairs, which provide the covalent contributions. A set of representative molecules are examined to explore how the zeroth order approximation works. We show that, as expected, the approximation improves with interatomic distance.
轨道不变位置空间技术被用于展示传统键级概念与化学相互作用能之间的理论联系。利用相互作用量子原子(IQA)方法中共价和离子相互作用能之间的并行性,定义了实空间离子键级。将共价和离子相互作用能展开为多极级数,我们表明,展开式中的零阶项,即主导总相互作用的项,只不过是距离标度的键级。一个具有化学直观性的图像出现了,其中成键是由永久转移电子的库仑引力引起的,这些电子产生离子项,以及共享对的一半的库仑引力,提供了共价贡献。考察了一组代表性分子,以探索零阶近似如何工作。我们表明,正如预期的那样,随着原子间距离的增加,该近似会得到改善。