Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006-, Oviedo, Spain.
Chemistry. 2018 Jun 26;24(36):9101-9112. doi: 10.1002/chem.201800979. Epub 2018 Jun 6.
A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real-space fragments is presented. Using the domains provided by the quantum theory of atoms-in-molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected by using well-known tools of real-space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term presented herein, are used to show the power of the approach.
本文提出了一种基于分子实空间碎片划分的内禀键强度的严格定义。利用原子在分子中量子理论(QTAIM)提供的域和相互作用量子原子(IQA)能量分解,我们展示了如何在每对碎片之间定义与内在键能的所有要求相匹配的原位键强度。如果碎片的能量是相对于其在分子中的状态来测量的,则总原子化或碎片化能量等于这些原位键能量(ISBE)的总和。这些能量通常高于孤立碎片的基态,其差值与标准碎片弛豫或变形能相对应,而这些能量也可以通过协议提供。变形能将离解能与 ISBE 联系起来,并可以使用化学成键的实空间理论的常用工具进行剖析。同样,ISBE 可以分为离子和共价贡献,这一特性增加了该方法的化学吸引力。所有研究的能量量都是可观察的,原则上可以通过实验来确定。本文介绍了几种系统,展示了每个能量项的作用,说明了该方法的强大之处。