Suppr超能文献

等电子锰和铁氢化/脱氢催化剂:异同点

Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.

作者信息

Gorgas Nikolaus, Kirchner Karl

机构信息

Institute of Applied Synthetic Chemistry , Technical University Vienna , Getreidemarkt 9 , A-1060 Vienna , Austria.

出版信息

Acc Chem Res. 2018 Jun 19;51(6):1558-1569. doi: 10.1021/acs.accounts.8b00149. Epub 2018 Jun 4.

Abstract

Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and electronic properties. It also addresses opportunities and restrictions in their catalytic applications. Apart from classical hydrogenations, it also covers the most recent developments of these catalysts for AAD resulting in the synthesis of complex organic molecules such as heterocycles via multicomponent reactions. The ambivalent hydrogen-based redox chemistry provides access to a variety of synthetically valuable reductive and oxidative coupling reactions. Hence, these catalysts cover a broad scope of catalytic applications and exhibit activities and productivities that are becoming competitive with those of well-established precious metal catalysts. The knowledge about the nature and characteristics of active Mn(I)- and Fe(II)-based systems paves the way for conceptually and mechanistically well-founded research, which might lead to further developments and the discovery of novel catalysts extending the current scope and limitations of reactivity. It underlines that base metal catalysts are beginning to challenge precious metal catalysts and contributes to the further advancement of waste-free sustainable base metal catalysis.

摘要

利用无毒、易得且廉价的起始原料进行有机合成的可持续过程是现代化学研究的一个主要目标。在这种背景下,在催化条件下进行反应并用储量丰富的非贵金属催化剂替代贵金属催化剂非常重要。特别是铁和锰是很有前景的候选者,因为它们是地壳中最丰富的金属之一,价格低廉,并且对环境的影响较小。就化学过程而言,氢化反应和无受体醇脱氢反应(AAD),有时与氢自转移反应相结合,正成为重要的研究领域。虽然前者是一个非常重要的合成过程,代表了一种高度原子经济且清洁的方法,但AAD是一种无氧化剂、环境友好的反应,在此反应中会生成羰基化合物以及作为有价值产物和/或反应物(自转移)的氢气和水。原位生成的羰基化合物可转化为其他有用的有机材料,如胺、亚胺或杂环化合物。2016年,包括我们小组在内的几个团队首次发现,带有强配位PNP钳形配体或相关三齿配体的氢化双羰基Mn(I)配合物作为氢化、转移氢化和脱氢反应的高效通用催化剂的潜力。这些配合物是相应的氢化单羰基Fe(II) PNP化合物的等电子类似物,表现出相似的反应活性,但根据配体的不同也有相当不同的行为。此外,锰化合物显示出更好的长期稳定性以及对苛刻反应条件的高耐受性。鉴于这些最新成果,本综述对比了Mn(I)和Fe(II) PNP钳形催化剂,突出了与特定结构和电子性质相关的具体特征。它还讨论了它们在催化应用中的机遇和限制。除了经典的氢化反应外,它还涵盖了这些催化剂在AAD方面的最新进展,通过多组分反应合成复杂有机分子,如杂环化合物。基于氢的矛盾氧化还原化学提供了获得各种具有合成价值的还原和氧化偶联反应的途径。因此,这些催化剂涵盖了广泛的催化应用范围,并且表现出与成熟的贵金属催化剂相竞争的活性和生产率。关于活性Mn(I)和Fe(II)基体系的性质和特征的知识为基于概念和机理的深入研究铺平了道路,这可能会带来进一步的发展,并发现新型催化剂,扩展当前反应活性的范围和局限性。它强调了贱金属催化剂开始对贵金属催化剂构成挑战,并有助于无废可持续贱金属催化的进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5dd/6011182/4c0edd983d8a/ar-2018-00149u_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验