Suppr超能文献

时复用控制在相控阵微波热疗头颈部癌症治疗中的应用潜力。

The potential of time-multiplexed steering in phased array microwave hyperthermia for head and neck cancer treatment.

机构信息

Discipline of Electrical and Electronic Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.

出版信息

Phys Med Biol. 2018 Jul 6;63(13):135023. doi: 10.1088/1361-6560/aaca10.

Abstract

Clinical studies have shown that hyperthermia sensitizes tumor cells for conventional therapies. During phased-array microwave hyperthermia, an array of antennas is used to focus the electromagnetic waves at the target region. Selective heating, while preserving the healthy tissue, is a demanding challenge and currently patient specific pre-treatment planning is used to optimize the amplitudes and phases of the waves. In addition, when needed, this single optimal heat distribution is adapted using the simulations based on the feedback from thermo-sensors and the patient. In this paper, we hypothesize that sequential, i.e. 'time-multiplexed', application of multiple Pareto optimal heating patterns provides a better time-averaged treatment quality. To test the benefit of such a time-multiplexed approach, a multi-objective genetic algorithm was introduced to balance two objectives that both focus the specific absorption rate (SAR) delivered to the target region but differ in the suppressing of pre-defined hotspots. This step leads to two Pareto optimal distributions. These 'diverse' antenna settings are then applied sequentially and thermal simulations are used to evaluate the effectiveness of the time-multiplexed steering. The proposed technique is tested using treatment planning data of a representative dataset of five head and neck patients for the HYPERcollar3D. Steering dynamics are analysed and the time-multiplexed steering is compared to the current static solution used in the clinic, i.e. hotspot-target SAR quotient optimization using particle swarm optimization. Our results demonstrate that realistic steering periods of 10s suffice to stabilize temperatures within 0.04 °C and the ability to enhance target heating while reducing hotspots, i.e. 0.3 °C-1.2 °C improvement in T while reducing hotspot temperatures by 0.6 °C-1.5 °C.

摘要

临床研究表明,热疗使肿瘤细胞对常规治疗敏感。在相控阵微波热疗中,使用天线阵列将电磁波聚焦在目标区域。选择性加热,同时保护健康组织,是一项具有挑战性的任务,目前使用基于治疗前规划来优化波的幅度和相位。此外,当需要时,基于热传感器和患者的反馈,使用模拟来调整这种单一的最佳热分布。在本文中,我们假设顺序,即“时分复用”,应用多个帕累托最优加热模式可以提供更好的时间平均治疗质量。为了测试这种时分复用方法的好处,引入了一种多目标遗传算法来平衡两个目标,这两个目标都集中在传递给目标区域的特定吸收率(SAR)上,但在抑制预定义的热点方面有所不同。这一步产生了两个帕累托最优分布。然后顺序应用这些“多样化”的天线设置,并使用热模拟来评估时分复用转向的有效性。该技术使用 HYPERcollar3D 的五名头颈部患者的代表性数据集的治疗计划数据进行了测试。分析了转向动态,并将时分复用转向与当前临床使用的静态解决方案进行了比较,即使用粒子群优化优化热点-目标 SAR 比。我们的结果表明,10 秒的实际转向时间足以将温度稳定在 0.04°C 以内,并且能够增强目标加热,同时减少热点,即 T 提高 0.3°C-1.2°C,同时热点温度降低 0.6°C-1.5°C。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验