Suppr超能文献

Spatiotemporal Gait Variables Using Wavelets for an Objective Analysis of Parkinson Disease.

作者信息

Castaño Yor, Arango Juan, Navarro Andrés

机构信息

i2t Research Team, Universidad Icesi, Cali, Colombia.

出版信息

Stud Health Technol Inform. 2018;249:173-178.

Abstract

Parkinson's disease generates a special interest in factors such as gait patterns, posture patterns, and risk of falls. The human gait pattern has a basic unit called the gait cycle, composed of two phases: stance and swing. Using gait analysis it is possible to get spatiotemporal variables as walking speed and step number derived from stance and swing phases. In this paper, we explore the feasibility of wavelet techniques to analyze gait signals, we use a member of Daubechies family to distinguish automatically gait phases, this approach allowed us to estimate spatiotemporal variables that shows significant differences between Parkinson patients and non-Parkinson patients, this result aims to allow clinical experts to easily diagnose and assess Parkinson patients, with short evaluation times and with non-invasive technologies.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验