Suppr超能文献

基于超声的肝脏跟踪,利用混合模板/光流方法。

Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach.

机构信息

Department of Mechanical and Aerospace Engineering, Monash University, Lab 298, New Horizon Building, Wellington Rd, Clayton, Melbourne, VIC, 3800, Australia.

Department of Radiology, The Alfred, Commercial Road, Melbourne, Australia.

出版信息

Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1605-1615. doi: 10.1007/s11548-018-1780-0. Epub 2018 Jun 5.

Abstract

PURPOSE

With the ongoing shift toward reduced invasiveness in many surgical procedures, methods for tracking moving targets within the body become vital. Non-invasive treatment methods such as stereotactic radiation therapy and high intensity focused ultrasound, in particular, rely on the accurate localization of targets throughout treatment to ensure optimal treatment provision. This work aims at developing a robust, accurate and fast method for target tracking based on ultrasound images.

METHODS

A method for tracking of targets in real-time ultrasound image data was developed, based on the combination of template matching, dense optical flow and image intensity information. A weighting map is generated from each of these approaches which are then normalized, weighted and combined, with the weighted mean position then calculated to predict the current position. The approach was evaluated on the Challenge for Liver Ultrasound Tracking 2015 dataset, consisting of a total of 24 training and 39 test datasets with a total of 53 and 85 annotated targets throughout the liver, respectively.

RESULTS

The proposed method was implemented in MATLAB and achieved an accuracy of [Formula: see text] (95%: 1.91) mm and [Formula: see text] (95%: 1.85) mm on the training and test data, respectively. Tracking frequencies of between 8 and 36 fps (mean of 22 fps) were observed, largely dependent on the size of the region of interest. The achieved results represent an improvement in mean accuracy of approximately 0.3 mm over the reported methods in existing literature.

CONCLUSIONS

This work describes an accurate and robust method for the tracking of points of interest within 2D ultrasound data, based on a combination of multi-template matching, dense optical flow and relative image intensity information.

摘要

目的

随着许多外科手术向微创性转变,跟踪体内移动目标的方法变得至关重要。特别是非侵入性治疗方法,如立体定向放射治疗和高强度聚焦超声,依赖于在整个治疗过程中准确地定位目标,以确保提供最佳的治疗。本工作旨在开发一种基于超声图像的鲁棒、准确和快速的目标跟踪方法。

方法

提出了一种基于模板匹配、密集光流和图像强度信息相结合的实时超声图像数据目标跟踪方法。从这些方法中的每一个生成一个加权图,然后对其进行归一化、加权和组合,计算加权平均值位置以预测当前位置。该方法在 2015 年肝脏超声跟踪挑战赛数据集上进行了评估,该数据集由总共 24 个训练数据集和 39 个测试数据集组成,肝脏中分别总共标注了 53 个和 85 个目标。

结果

所提出的方法在 MATLAB 中实现,在训练和测试数据上的精度分别为[公式:见文本](95%:1.91)mm 和[公式:见文本](95%:1.85)mm。观察到的跟踪频率在 8 到 36 fps 之间(平均为 22 fps),主要取决于感兴趣区域的大小。所达到的结果代表在现有文献中报告的方法的平均精度提高了约 0.3mm。

结论

本工作描述了一种基于多模板匹配、密集光流和相对图像强度信息相结合的 2D 超声数据中感兴趣点跟踪的准确和鲁棒方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验