Suppr超能文献

基于二维超声成像的机器学习在腹部放射治疗中的分次内呼吸运动跟踪。

2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning.

机构信息

Shandong Key Laboratory of Medical Physics and Image Processing, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, People's Republic of China. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States of America. Authors contributed equally to this work.

出版信息

Phys Med Biol. 2019 Sep 11;64(18):185006. doi: 10.1088/1361-6560/ab33db.

Abstract

We have previously developed a robotic ultrasound imaging system for motion monitoring in abdominal radiation therapy. Owing to the slow speed of ultrasound image processing, our previous system could only track abdominal motions under breath-hold. To overcome this limitation, a novel 2D-based image processing method for tracking intra-fraction respiratory motion is proposed. Fifty-seven different anatomical features acquired from 27 sets of 2D ultrasound sequences were used in this study. Three 2D ultrasound sequences were acquired with the robotic ultrasound system from three healthy volunteers. The remaining datasets were provided by the 2015 MICCAI Challenge on Liver Ultrasound Tracking. All datasets were preprocessed to extract the feature point, and a patient-specific motion pattern was extracted by principal component analysis and slow feature analysis (SFA). The tracking finds the most similar frame (or indexed frame) by a k-dimensional-tree-based nearest neighbor search for estimating the tracked object location. A template image was updated dynamically through the indexed frame to perform a fast template matching (TM) within a learned smaller search region on the incoming frame. The mean tracking error between manually annotated landmarks and the location extracted from the indexed training frame is 1.80  ±  1.42 mm. Adding a fast TM procedure within a small search region reduces the mean tracking error to 1.14  ±  1.16 mm. The tracking time per frame is 15 ms, which is well below the frame acquisition time. Furthermore, the anatomical reproducibility was measured by analyzing the location's anatomical landmark relative to the probe; the position-controlled probe has better reproducibility and yields a smaller mean error across all three volunteer cases, compared to the force-controlled probe (2.69 versus 11.20 mm in the superior-inferior direction and 1.19 versus 8.21 mm in the anterior-posterior direction). Our method reduces the processing time for tracking respiratory motion significantly, which can reduce the delivery uncertainty.

摘要

我们之前开发了一种用于腹部放射治疗中运动监测的机器人超声成像系统。由于超声图像处理速度较慢,我们之前的系统只能在屏气状态下跟踪腹部运动。为了克服这一限制,提出了一种用于跟踪分次内呼吸运动的新型基于 2D 的图像处理方法。本研究使用了从 27 组 2D 超声序列中获得的 57 个不同的解剖特征。使用机器人超声系统从 3 名健康志愿者中采集了 3 组 2D 超声序列。其余数据集由 2015 年 MICCAI 肝脏超声跟踪挑战赛提供。所有数据集均经过预处理以提取特征点,并通过主成分分析和慢特征分析(SFA)提取患者特定的运动模式。跟踪通过基于 k 维树的最近邻搜索找到最相似的帧(或索引帧),以估计跟踪对象的位置。通过索引帧动态更新模板图像,以便在传入帧上的学习较小搜索区域内执行快速模板匹配(TM)。手动注释标记与从索引训练帧中提取的位置之间的平均跟踪误差为 1.80  ±  1.42 mm。在较小的搜索区域内添加快速 TM 过程将平均跟踪误差降低至 1.14  ±  1.16 mm。每帧的跟踪时间为 15ms,远低于帧采集时间。此外,通过分析相对于探头的位置的解剖学标记来测量位置的解剖学可重复性;与力控探头相比,位置控制探头具有更好的可重复性,在所有三个志愿者案例中,位置控制探头的平均误差较小(在上下方向上为 2.69 与 11.20mm,在前后方向上为 1.19 与 8.21mm)。我们的方法大大减少了跟踪呼吸运动的处理时间,从而降低了输送的不确定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验