Nafday Dhani, Sarkar Subhrangsu, Ayyub Pushan, Saha-Dasgupta Tanusri
Department of Condensed Matter Physics and Materials Science , S. N. Bose National Centre for Basic Sciences , Kolkata 700106 , India.
Department of Condensed Matter Physics and Materials Science , Tata Institute of Fundamental Research , Mumbai 400005 , India.
ACS Nano. 2018 Jul 24;12(7):7246-7252. doi: 10.1021/acsnano.8b03360. Epub 2018 Jun 12.
From a careful analysis of existing data as well as new measurements, we show that the size dependence of the lattice parameters in metal nanoparticles with face-centered cubic (fcc) and body-centered cubic (bcc) symmetries display opposite trends: nanoparticles with fcc structure generally contract with decreasing particle size, while those with bcc structure expand. We present a microscopic explanation for this apparently puzzling behavior based on first-principles simulations. Our results, obtained from a comparison of density functional theory calculations with experimental data, indicate that the nanoparticles are capped by a surface monolayer of oxygen atoms, which is routinely detected by surface-sensitive techniques. The bcc- and fcc-based nanoparticles respond in contrasting fashion to the presence of the oxygen capping layer, and this dictates whether the corresponding lattice parameter would increase or decrease with size reduction. The metal-oxygen bonds at the surface, being shorter and stronger than typical metal-metal bonds, pull the surface metal atoms outward. This outward movement of surface atoms influences the core regions to a larger extent in the relatively open bcc geometry, producing a rather large overall expansion of the cluster, compared to the bulk. In case of fcc clusters, on the other hand, the outward movement of surface metal atoms does not percolate too far inside, resulting in either a smaller net expansion or contraction of the cluster depending on the extent of surface oxygen coverage. Our study therefore provides a convincing physicochemical basis for the correlation between the underlying geometry and the nature of change of the lattice parameters under size reduction.
通过对现有数据以及新测量结果的仔细分析,我们表明,具有面心立方(fcc)和体心立方(bcc)对称性的金属纳米颗粒中晶格参数的尺寸依赖性呈现出相反的趋势:具有fcc结构的纳米颗粒通常会随着粒径减小而收缩,而具有bcc结构的纳米颗粒则会膨胀。我们基于第一性原理模拟对此明显令人困惑的行为给出了微观解释。我们将密度泛函理论计算结果与实验数据进行比较后得出的结果表明,纳米颗粒被氧原子表面单层包覆,这是通过表面敏感技术常规检测到的。基于bcc和fcc的纳米颗粒对氧包覆层的存在有截然不同的反应,这决定了相应的晶格参数会随着尺寸减小而增加还是减小。表面的金属 - 氧键比典型的金属 - 金属键更短且更强,将表面金属原子向外拉。与体相相比,表面原子的这种向外移动在相对开放的bcc几何结构中对核心区域的影响更大,从而使团簇产生相当大的整体膨胀。另一方面,对于fcc团簇,表面金属原子的向外移动不会深入到内部太远,这取决于表面氧覆盖程度,导致团簇要么净膨胀较小,要么收缩。因此,我们的研究为尺寸减小情况下潜在几何结构与晶格参数变化性质之间的相关性提供了令人信服的物理化学基础。