Suppr超能文献

铱配合物的激发态早期弛豫动力学:电子和空穴转移的不同作用。

Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer.

机构信息

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China.

出版信息

J Phys Chem A. 2018 Jun 28;122(25):5518-5532. doi: 10.1021/acs.jpca.8b04392. Epub 2018 Jun 18.

Abstract

Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S ( n = 1-5) and ten excited triplet states, i.e., T ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S to T are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.

摘要

含铱配合物的激发态和光物理性质因其可能作为有机发光二极管发射材料而得到广泛研究。然而,它们的早期激发态弛豫动力学在计算上研究较少。在此,我们采用了我们最近实现的基于 TDDFT 的广义表面跳跃动力学方法,模拟了具有不同配体的三种铱(III)配合物的激发态弛豫动力学。根据我们包括五个激发单线态 i.e., S (n=1-5)和十个激发三线态 i.e., T (n=1-10)的多态动力学模拟,我们发现这些三种铱(III)配合物中,从 S 到 T 的系间窜越 (ISC) 过程非常高效且超快。相应的 ISC 速率估计为 65、81 和 140 fs,这与实验测量的约 80、80 和 110 fs 相当接近。此外,各自单重态和三重态内的内转换 (IC) 过程也非常快。这些超快的 IC 和 ISC 过程分别由大的非绝热和自旋轨道耦合以及小的能隙引起。重要的是,尽管这些铱(III)配合物具有相似的宏观现象,即超快的 IC 和 ISC,但它们微观的激发态弛豫机制和动力学在性质上是不同的。具体而言,电子和空穴的动力学行为及其在调节这些铱(III)配合物的激发态弛豫动力学中的作用是不同的。换句话说,与中心铱(III)原子配位的配体的电子性质在调节微观激发态弛豫动力学方面起着重要作用。这些获得的见解可能有助于合理设计具有优异光致发光性能的铱(III)配合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验