Suppr超能文献

一种基于稀疏驱动的旋转目标雷达成像的图像聚焦方法。

An Image Focusing Method for Sparsity-Driven Radar Imaging of Rotating Targets.

机构信息

School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia.

National Security and ISR Division, Defence Science and Technology Group, Edinburgh, SA 5111, Australia.

出版信息

Sensors (Basel). 2018 Jun 5;18(6):1840. doi: 10.3390/s18061840.

Abstract

This paper presents a new image focusing algorithm for sparsity-driven radar imaging of rotating targets. In the general formulation of off-grid scatterers, the sparse reconstruction algorithms may result in blurred and low-contrast images due to dictionary mismatch. Motivated by the natural clustering of atoms in the sparsity-based reconstructed images, the proposed algorithm first partitions the atoms into separate clusters, and then the true off-grid scatterers associated with each cluster are estimated. Being a post-processing technique, the proposed algorithm is computationally simple, while at the same time being capable of producing a sharp and correct-contrast image, and attaining a scatterer parameter estimation performance close to the Cramér⁻Rao lower bound. Numerical simulations are presented to corroborate the effectiveness of the proposed algorithm.

摘要

本文提出了一种新的稀疏驱动雷达旋转目标成像聚焦算法。在非网格散射体的一般公式中,由于字典不匹配,稀疏重建算法可能导致图像模糊和对比度低。受基于稀疏重建图像中原子自然聚类的启发,所提出的算法首先将原子分成单独的簇,然后估计与每个簇相关的真实非网格散射体。作为一种后处理技术,所提出的算法计算简单,同时能够产生清晰和正确对比度的图像,并实现接近克拉美-罗下限的散射体参数估计性能。数值模拟验证了所提出算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7187/6022193/33cefe385eec/sensors-18-01840-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验