Suppr超能文献

三维运动目标的干涉合成孔径雷达稀疏孔径运动估计

3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

出版信息

IEEE Trans Image Process. 2016 May;25(5):2005-20. doi: 10.1109/TIP.2016.2535362. Epub 2016 Feb 26.

Abstract

In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm.

摘要

在高分辨率逆合成孔径雷达(ISAR)成像的当前情况下,非合作目标可能具有很强的机动性,这往往会导致回波数据中的时变多普勒调制和成像平面。此外,从稀疏孔径(SA)数据实现机动目标的 ISAR 成像仍然是一个挑战。本文专注于具有 SA 的干涉逆合成孔径雷达(InISAR)中机动目标的 3D 几何形状和运动估计问题。对于匀加速旋转的目标,回波中的旋转调制被表述为在 chirp-Fourier 字典下的 chirp 感知码,以表示机动性。特别是,开发了一种联合多通道成像方法来合并多通道数据,并将多通道 ISAR 成像形成视为联合稀疏性约束优化。然后,使用修改的正交匹配追踪(OMP)算法来解决优化问题,以产生高分辨率距离-多普勒(RD)图像和 chirp 参数估计。然后使用获取的 RD 图像和 chirp 参数进行 3D 目标几何形状和运动估计。在此,提出了一种 3D 几何形状和旋转运动的联合估计方法,以实现异常值去除和误差减少。与独立的单通道处理相比,所提出的联合多通道成像方法在 2D 成像、3D 成像和运动估计方面表现更好。最后,使用模拟和测量数据进行了实验,以验证所提出算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验