EPSRC Centre for Doctoral Training in Metamaterials (XM2), Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France.
Nat Commun. 2018 Jun 6;9(1):2194. doi: 10.1038/s41467-018-03982-7.
Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.
赝相对论狄拉克准粒子已经在大量人工石墨烯系统中出现,这些系统模拟了石墨烯的基本蜂窝对称性。然而,如果不改变晶格结构,就很难操纵它们的性质。在这里,我们从理论上研究了由蜂窝超表面支持的极化激元,尽管共振元件的性质很平凡,但我们揭示了丰富的狄拉克物理,这源于光物质相互作用中的非平凡缠绕。超表面同时表现出两种不同的无质量狄拉克极化激元,即 I 型和 II 型。通过仅通过封闭腔修改光子环境,就可以操纵 II 型狄拉克点的位置,从而导致截然不同的极化激元相。这使得人们可以在不改变晶格结构的情况下改变出现的狄拉克极化激元的基本性质,这在真实或人工石墨烯系统中是没有类似情况的。因此,利用光子环境将在亚波长尺度上产生前所未有的狄拉克物理。