Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
Nature. 2012 Mar 14;483(7389):302-5. doi: 10.1038/nature10871.
Dirac points are central to many phenomena in condensed-matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators. At a Dirac point, two energy bands intersect linearly and the electrons behave as relativistic Dirac fermions. In solids, the rigid structure of the material determines the mass and velocity of the electrons, as well as their interactions. A different, highly flexible means of studying condensed-matter phenomena is to create model systems using ultracold atoms trapped in the periodic potential of interfering laser beams. Here we report the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum bandgap inside the Brillouin zone at the positions of the two Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to change the positions of the Dirac points inside the Brillouin zone. When the anisotropy exceeds a critical limit, the two Dirac points merge and annihilate each other-a situation that has recently attracted considerable theoretical interest but that is extremely challenging to observe in solids. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials in which the topology of the band structure is crucial, but also provide an avenue to exploring many-body phases resulting from the interplay of complex lattice geometries with interactions.
狄拉克点是凝聚态物理中许多现象的核心,从石墨烯中的无质量电子到拓扑绝缘体中传导边缘态的出现。在狄拉克点处,两个能带线性相交,电子表现为相对论狄拉克费米子。在固体中,材料的刚性结构决定了电子的质量和速度以及它们的相互作用。一种不同的、高度灵活的研究凝聚态现象的方法是使用被捕获在干涉激光束的周期性势中的超冷原子来创建模型系统。在这里,我们报告了在可调谐蜂窝状光晶格中创建具有可调特性的狄拉克点的情况。通过动量分辨的能带间跃迁,我们在布里渊区中狄拉克点的位置观察到了带隙的最小值。我们利用晶格势的独特可调性来通过破坏反转对称性来调整狄拉克费米子的有效质量。此外,改变晶格各向异性可以改变布里渊区中狄拉克点的位置。当各向异性超过临界极限时,两个狄拉克点合并并相互湮灭——这种情况最近引起了相当大的理论兴趣,但在固体中极难观察到。我们在晶格参数空间中绘制了这种拓扑转变,并与从头算计算得出了极好的一致性。我们的结果不仅为模型材料铺平了道路,在这些材料中,带结构的拓扑至关重要,而且还为探索由于复杂的晶格几何形状与相互作用的相互作用而产生的多体相提供了途径。