Galván Ismael, Møller Anders P
Departamento de Ecología Evolutiva Estación Biológica de Doñana CSIC Sevilla Spain.
Ecologie Systématique Evolution Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay Orsay Cedex France.
Ecol Evol. 2018 Apr 19;8(10):4949-4957. doi: 10.1002/ece3.4073. eCollection 2018 May.
The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here we propose a new model without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. We tested our model with individual-based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. Our findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal.
关于寿命变异的进化解释仍然基于拮抗多效性假说,但该假说已受到多项研究的挑战。其他模型假定存在一些基因,这些基因以缩短个体寿命为代价,有利于衰老和群体利益。在此,我们提出一种不做此类假设的新模型。该模型认为,有限的扩散会通过减少基因流动,根据寿命对个体生物进行空间隔离。因此,寿命较短的亚种群中的个体,可能比寿命较长的亚种群中的个体,在不断增长的种群中更能抵抗种群崩溃,从而降低物种内部的寿命变异性。由于扩散较少的物种在寿命方面可能形成更同质化的亚种群,这可能导致更大的能力来最大化产生可行亚种群的寿命,因此在物种间的扩散能力和寿命之间产生负相关。我们使用基于个体的模拟以及一项比较研究来检验我们的模型,该比较研究使用了26种鸟类的最大寿命和出生扩散距离的实证数据,并控制了遗传变异性、体型和系统发育的影响。模拟结果显示,最低的扩散概率产生了最大寿命,比较分析则得出寿命与出生扩散距离之间存在负相关,因此与我们的模型一致。所以,我们的研究结果表明,寿命变异性的进化是扩散生态过程的结果。