Helfferich J, Brisch J, Meyer H, Benzerara O, Ziebert F, Farago J, Baschnagel J
Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021, Karlsruhe, Germany.
Université de Strasbourg, CNRS, ICS UPR22, F-67000, Strasbourg, France.
Eur Phys J E Soft Matter. 2018 Jun 1;41(6):71. doi: 10.1140/epje/i2018-11680-1.
From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature [Formula: see text] of mode-coupling theory: the mean-square displacement g(t), the non-Gaussian parameter [Formula: see text] and the self-part of the van Hove function [Formula: see text] which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near [Formula: see text]. In the time window of the early [Formula: see text] relaxation [Formula: see text] is large and [Formula: see text] is broad, reflecting the coexistence of monomer displacements that are much smaller ("slow particles") and much larger ("fast particles") than the average at time t, i.e. than [Formula: see text]. For large r the tail of [Formula: see text] is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of [Formula: see text] at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early [Formula: see text] regime we also analyze the MD results for [Formula: see text] via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below [Formula: see text] , deviations occur for larger r comprising the tail of [Formula: see text]. The CTRW analysis suggests that single-particle "hops" are a contributing factor for these deviations.
通过对短链玻璃形成聚合物熔体的珠簧模型进行平衡分子动力学(MD)模拟,我们计算了几个表征模式耦合理论(外推)临界温度[公式:见正文]附近单单体动力学的量:均方位移g(t)、非高斯参数[公式:见正文]以及范霍夫函数的自部分[公式:见正文],后者测量时间t内单体位移r的分布。我们还通过连续时间随机游走(CTRW)方法确定了这些量。CTRW是根据我们先前分析中已知的各种概率分布定义的。利用这些分布,CTRW可以进行数值求解,并与无可调参数的MD数据进行比较。MD结果揭示了接近[公式:见正文]的过冷熔体的非均匀和非高斯单粒子动力学。在早期[公式:见正文]弛豫的时间窗口内,[公式:见正文]很大且[公式:见正文]很宽,反映了在时间t时比平均值(即比[公式:见正文])小得多的单体位移(“慢粒子”)和大得多的单体位移(“快粒子”)的共存。对于较大的r,[公式:见正文]的尾部与指数衰减兼容,这在许多玻璃态系统中都有发现。CTRW可以在定性到半定量的水平上再现[公式:见正文]的时空依赖性。然而,在研究的温度范围内,它在定量上并不准确,尽管随着冷却与MD数据的一致性有所改善。在早期[公式:见正文]区域,我们还通过理想模式耦合理论预测的时空因式分解定理分析了[公式:见正文]的MD结果。虽然我们发现对于小r,无论是在[公式:见正文]之上还是之下,因式分解都得到了很好的满足,但对于包含[公式:见正文]尾部的较大r会出现偏差。CTRW分析表明,单粒子“跳跃”是这些偏差的一个促成因素。