Suppr超能文献

从文献和数据库挖掘的断言中预测药物不良反应。

Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions.

机构信息

Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA.

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA.

出版信息

Drug Saf. 2018 Nov;41(11):1059-1072. doi: 10.1007/s40264-018-0688-5.

Abstract

INTRODUCTION

Given that adverse drug effects (ADEs) have led to post-market patient harm and subsequent drug withdrawal, failure of candidate agents in the drug development process, and other negative outcomes, it is essential to attempt to forecast ADEs and other relevant drug-target-effect relationships as early as possible. Current pharmacologic data sources, providing multiple complementary perspectives on the drug-target-effect paradigm, can be integrated to facilitate the inference of relationships between these entities.

OBJECTIVE

This study aims to identify both existing and unknown relationships between chemicals (C), protein targets (T), and ADEs (E) based on evidence in the literature.

MATERIALS AND METHODS

Cheminformatics and data mining approaches were employed to integrate and analyze publicly available clinical pharmacology data and literature assertions interrelating drugs, targets, and ADEs. Based on these assertions, a C-T-E relationship knowledge base was developed. Known pairwise relationships between chemicals, targets, and ADEs were collected from several pharmacological and biomedical data sources. These relationships were curated and integrated according to Swanson's paradigm to form C-T-E triangles. Missing C-E edges were then inferred as C-E relationships.

RESULTS

Unreported associations between drugs, targets, and ADEs were inferred, and inferences were prioritized as testable hypotheses. Several C-E inferences, including testosterone → myocardial infarction, were identified using inferences based on the literature sources published prior to confirmatory case reports. Timestamping approaches confirmed the predictive ability of this inference strategy on a larger scale.

CONCLUSIONS

The presented workflow, based on free-access databases and an association-based inference scheme, provided novel C-E relationships that have been validated post hoc in case reports. With refinement of prioritization schemes for the generated C-E inferences, this workflow may provide an effective computational method for the early detection of potential drug candidate ADEs that can be followed by targeted experimental investigations.

摘要

简介

由于药物不良反应 (ADE) 导致了上市后患者伤害和随后的药物撤市,候选药物在药物开发过程中的失败,以及其他负面结果,因此尽早尝试预测 ADE 和其他相关药物-靶标-效应关系至关重要。当前的药理学数据源提供了药物-靶标-效应范式的多个互补视角,可以进行整合,以促进这些实体之间关系的推断。

目的

本研究旨在根据文献中的证据,识别化学物质 (C)、蛋白质靶标 (T) 和 ADE 之间现有的和未知的关系。

材料和方法

采用化学信息学和数据挖掘方法,整合和分析公开的临床药理学数据和文献中药物、靶标和 ADE 之间的关联。基于这些关联,开发了一个 C-T-E 关系知识库。从几个药理学和生物医学数据来源收集了已知的化学物质、靶标和 ADE 之间的成对关系。这些关系根据 Swanson 的范式进行了整理和整合,形成了 C-T-E 三角形。然后推断缺失的 C-E 边作为 C-E 关系。

结果

推断出了药物、靶标和 ADE 之间未报告的关联,并将推断作为可测试的假设进行了优先级排序。使用基于发表于确认病例报告之前的文献来源的推断,识别出了几个 C-E 推断,包括睾酮→心肌梗死。时间戳方法在更大的范围内证实了这种推断策略的预测能力。

结论

所提出的基于免费访问数据库和基于关联的推断方案的工作流程,提供了新的 C-E 关系,这些关系已在病例报告中事后验证。通过细化生成的 C-E 推断的优先级排序方案,该工作流程可能为早期检测潜在药物候选 ADE 提供一种有效的计算方法,随后可以进行有针对性的实验研究。

相似文献

1
Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions.
Drug Saf. 2018 Nov;41(11):1059-1072. doi: 10.1007/s40264-018-0688-5.
2
Adverse drug events: database construction and in silico prediction.
J Chem Inf Model. 2013 Apr 22;53(4):744-52. doi: 10.1021/ci4000079. Epub 2013 Apr 8.
3
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):335. doi: 10.1186/s12859-016-1220-5.
6
A data-driven method to detect adverse drug events from prescription data.
J Biomed Inform. 2018 Sep;85:10-20. doi: 10.1016/j.jbi.2018.07.013. Epub 2018 Jul 29.
7
Mining multi-item drug adverse effect associations in spontaneous reporting systems.
BMC Bioinformatics. 2010 Oct 28;11 Suppl 9(Suppl 9):S7. doi: 10.1186/1471-2105-11-S9-S7.
8
Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.
Drug Saf. 2016 Jan;39(1):45-57. doi: 10.1007/s40264-015-0352-2.
9
A method for systematic discovery of adverse drug events from clinical notes.
J Am Med Inform Assoc. 2015 Nov;22(6):1196-204. doi: 10.1093/jamia/ocv102. Epub 2015 Jul 31.
10
Sex differences in text-mined possible adverse drug events associated with drugs for psychosis.
J Psychopharmacol. 2020 May;34(5):532-539. doi: 10.1177/0269881120903466. Epub 2020 Feb 12.

引用本文的文献

1
Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review.
Pharmaceuticals (Basel). 2024 Jun 17;17(6):795. doi: 10.3390/ph17060795.

本文引用的文献

2
Fundamental Concepts Regarding Testosterone Deficiency and Treatment: International Expert Consensus Resolutions.
Mayo Clin Proc. 2016 Jul;91(7):881-96. doi: 10.1016/j.mayocp.2016.04.007. Epub 2016 Jun 21.
3
Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation.
J Chem Inf Model. 2016 Jul 25;56(7):1243-52. doi: 10.1021/acs.jcim.6b00129. Epub 2016 Jun 22.
4
Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1069-74. doi: 10.1093/nar/gkv1230. Epub 2015 Nov 17.
5
Curation of chemogenomics data.
Nat Chem Biol. 2015 Aug;11(8):535. doi: 10.1038/nchembio.1881.
6
Exploring relation types for literature-based discovery.
J Am Med Inform Assoc. 2015 Sep;22(5):987-92. doi: 10.1093/jamia/ocv002. Epub 2015 May 13.
7
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
8
Identifying plausible adverse drug reactions using knowledge extracted from the literature.
J Biomed Inform. 2014 Dec;52:293-310. doi: 10.1016/j.jbi.2014.07.011. Epub 2014 Jul 19.
9
Panacea, a semantic-enabled drug recommendations discovery framework.
J Biomed Semantics. 2014 Mar 6;5(1):13. doi: 10.1186/2041-1480-5-13.
10
Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men.
PLoS One. 2014 Jan 29;9(1):e85805. doi: 10.1371/journal.pone.0085805. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验